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Abstract: Objective To investigate the potential association between 221 types of gut microbiota and hepatocellular carcinoma
(HCC) using a two- sample Mendelian randomization approach, providing insights for the prevention and treatment of HCC.
Methods The HCC data (n=197,611) from the IEU OpenGWAS database was used as outcome data, while microbiota and
hepatocellular carcinoma (HCC) data were used as outcome data. The HCC data (7=197,611) from the IEU OpenGWAS database
was used as outcome data, while gut microbiota data (/7=18,340) obtained from a meta-analysis of a large-scale multi-ethnic
genome-wide association study was used as exposure data. The analysis primarily employed the inverse variance weighting
method, assessing the results based on the odds ratio (OR) and 95% confidence interval (Cl). Quality control was conducted
using leave-one-out analysis, heterogeneity tests, and the MR-PRESSO method. Results An increased abundance of the genus
Oscillibacter was associated with a higher probability of developing HCC (OR. 1.411, 95%C/ 1.049-1.899, P=0.025). Leave-one-
out analysis indicated that the study results were stable and no instrumental variables had a strong impact on the results. This
suggests a positive causal relationship between gut microbiota and HCC, which can eliminate the effects of heterogeneity and
horizontal gene pleiotropy on causal-effect estimation. Conclusion An increased abundance of the genus Oscillibacter may
raise the probability of developing HCC.
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Hepatocellular carcinoma is currently the third
leading cause of cancer-related deaths globally, with about
910,000 new cases each year, posing a serious threat to the
health of the population[l]. The situation of
hepatocellular carcinoma prevention and treatment in
China is still rough. The prevalence of hepatocellular
carcinoma caused by hepatitis B virus infection and non-
alcoholic fatty liver disease accounts for about half of the
global prevalence, and the 5-year survival rate is only
12.5%. Therefore, basic and clinical research on
hepatocellular carcinoma must be strengthened.

Gut microbes include bacteria, viruses, fungi and
other microorganisms, mainly bacteria[2-3], which
influence immune regulation, energy metabolism, etc.[4].
The enterohepatic axis enables the host to resist potentially
harmful toxins through microbiota, immune regulation,
inflammatory metabolism, etc., thus maintaining immune
and physiological homeostasis[5]. In recent years, a
growing number of studies have identified an association

between gut microbiota and hepatocellular carcinoma[6-7].

A prospective cohort study showed that higher levels of
anaerobicum Mycobacterium had an inhibitory effect on
hepatocellular carcinoma. In contrast, Raoulia spp. and
Haemophilus spp. were associated with the development
of hepatocellular  carcinoma[8]. Although these
epidemiologic studies show an association between
intestinal flora and hepatocellular carcinoma, it is difficult
to establish a causal relationship between intestinal flora

and hepatocellular carcinoma through observational
epidemiologic studies. Randomized controlled trials are
the gold standard for determining causality in
epidemiological statistical methods. However,
implementation of randomized controlled trials can be
difficult due to ethical constraints[9]. Mendelian
randomization (MR) analysis is an alternative method that
can be used as an alternative to randomized controlled trial
studies, which uses the genetic principles of random
pairing and genome segregation to simulate the effects of
randomized controlled trials in order to assess the causal
effects of specific factors on the outcome variable. In
addition to lifting ethical constraints, Mendelian
randomization allows for using large-scale available
genetic data, such as data from genome-wide association
studies (GWAS), with genome segregation and pairing,
thereby controlling for and reducing the effects of potential
confounders[ 10]. Therefore, this study utilized two-sample
MR analysis to investigate the causal relationship between
gut microbes and hepatocellular carcinoma using 211
single nucleotide polymorphisms (SNPs) of gut microbes
published in Nature Genetics in 2021 as the exposure data,
and data of hepatocellular carcinoma as the outcome
data[11].

1 Materials and methods

1.1 Study design
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In this study, the causal relationship between
microbial flora and hepatocellular carcinoma was analyzed
using the GWAS summary statistics, which included a total

of 221 gut microbiota. Subsequently, quality control tests,
such as heterogeneity and pleiotropy tests, were performed
to ensure the reliability of the causality test results. [Fig.1]
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Fig. 1 The Mendelian randomization analysis model used in this study

1.2 Data sources

The GWAS outcome data for hepatocellular
carcinoma in this study were obtained from the IEU
OpenGWAS database (https://gwas.mrcieu.ac.uk/)[16].
Hepatocellular carcinoma (bbj-a-158) contained 197,611
individuals and 8,885,115 SNPs. In addition, summary
statistics on gut microbial classification were obtained
from a meta-analysis of a large-scale and multi-ethnic
genomic association study covering 18,340 individuals
from 24 cohorts [11]. The study characterized microbial
composition using three different variant regions of the
target-localized 16S rRNA gene. A total of 211 taxonomic
orders (131 genera, 35 families, 20 orders, 16 classes and
9 phyla) were included.

1.3 Instrumental variables

In order to screen SNPs with significant correlation
with hepatocellular carcinoma as instrumental variables,
221 gut microbiota were screened in this study respectively
[13]. Considering the generally low abundance of gut
microbiota, P<5x107 was used as the screening criterion,
which is consistent with most of the gut microorganism
research. In addition, a linkage disequilibrium coefficient
r? < 0.05 was set in this study, and a window size of 500
kb was used to exclude highly correlated SNPs to ensure
that the selected SNPs were independent of each other [16-
17]. Finally, SNPs associated with gut microbial
abundance were projected to the GWAS summary data for
hepatocellular carcinoma, and the corresponding statistical
parameters were extracted.

1.4 Statistical analysis

MR analyses were performed using R software (4.2.1)
and the "TwoSampleMR" package (0.5.7). In order to
assess the causal effect of a single instrumental variable,
the Wald ratio method was used; while for assessing the
causal effect of multiple instrumental variables, the
inverse-variance weighted (IVW), MR-Egger method,
Weighted median estimator (WME), Simple mode (SM),
and Weighted mode (WM) were used[20-21]. In addition,
the risk of hepatocellular carcinoma was assessed using the
OR and the corresponding 95% CI. Regarding the results,
the correlation was considered plausible when P<0.05 for
IVW. The robustness of the results was verified by
sensitivity analysis, and heterogeneity was tested using
Cochrane's Q test. In addition, genetic pleiotropy was
investigated using the MR Egger intercept and MR-
PRESSO methods.

2 Results
2.1 Two-sample MR analysis

The initial screening of 221 SNPs of gut microbiota
was first performed based on P<5x107, and the threshold
of linkage disequilibrium analysis. Subsequently, two gut
microbiota associated with hepatocellular carcinoma,
Oscillibacter (id: ebi-a-GCST90017036) and unknown
genus 826 (id: ebi-a-GCST90017086), were identified by
using IVW, ME, WME, WMO, and SM methods, with
IVW method as the main screening criterion, tentatively
named genus 826. The results showed that increased
abundance of the inflammation-associated genus —
Oscillibacter (OR = 1.411, 95%CI = 1.049-1.899, P =
0.025), as well as the unknown genus 826 (OR = 1.627,
95%CI = 1.163-2.276, P = 0.004), increased the risk of
hepatocellular carcinoma. The results of the specific [IVW,
ME, WME, WMO, and SM tests are shown in Table 1.
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Although there were no statistically significant differences
between the four methods except for the [IVW method, the
scatter plots [Figure 2] also demonstrates that the
correlations  between the two microbiota and
hepatocellular carcinoma analyzed by the different
methods were all positive, and the trends were essentially
similar.

2.2 Quality control

Firstly, the effect values of most of the included

instrumental variables were shown to be very similar to the
total effect values by leave-one-out analysis. [Figure 3]
Secondly, the results of heterogeneity test showed
Oscillibacter (Q=3.114, P=0.926), unknown genus 826
(P=0.887). Gene pleiotropy results showed Oscillibacter
(P=0.703), unknown genus 826 (P=0.516). The results of
both heterogeneity test and pleiotropy test showed P>0.05
and the difference was not statistically significant,
suggesting that there is no need to take into account the
effect of heterogeneity and pleiotropy on the results.The
MR-PRESSO results are shown in Table 2.

Tab.1 The five MR methods corresponding to gut microbiota with significant causal relationships in hepatocellular carcinoma

Exposure Methods nSNP Beta OR 95% CI P value
VW 9 0.345 1.411 1.049-1.899 0.025
Oscillibacter WME 9 0.276 1.317 0.890 -1.950 0.167
ME 9 0.059 1.061 0.251-4.478 0.937
SM 9 0.238 1.269 0.740-1.269 0.410
WMO 9 0.243 1.275 0.774-2.100 0.366
IVvw 7 0.486 1.627 1.163-2.276 0.004
WME 7 0.378 1.459 0.936-2.274 0.094
Unknown genus 826 ME 7 0.090 1.094 0.341-3.507 0.885
SM 7 0.338 1.402 0.749-2.626 0.330
WMO 7 0.350 1.420 0.817-2.466 0.259
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Fig.2 The scatter plots for the five MR models representing gut microbiota with causal relationships to hepatocellular carcinoma
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Fig.3 The leave-one-out plot for gut microbiota with causal relationships to hepatocellular carcinoma
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Tab. 2 The heterogeneity, horizontal pleiotropy test, and MR-PRESSO results for gut microbiota with causal relationships to
hepatocellular carcinoma

Exposure Heterogeneity Horizontal polytropy MR-PRESSO
Q P value P value Raw P value
Oscillibacter 3.114 0.926 0.703 1.098 (1.026-1.176) 0.006
Unknown genus 826 2.324 0.887 0.516 1.113 (1.008-1.229) 0.032

3 Discussion

In this study, we investigated the causal relationship
between the relative abundance of 221 gut microbiota and
hepatocellular carcinoma using a two-sample MR
approach utilizing public GWAS data on gut microbiota
and GWAS data on hepatocellular carcinoma. The study
results showed that the abundance of Oscillibacter and
unknown genus 826 was positively correlated with the
development of hepatocellular carcinoma. The VW
results suggested that the risk of hepatocellular carcinoma
in patients with Oscillibacter and unknown genus 826 was
increased by 1.411-fold and 1.627-fold, respectively,
compared with the normal population. Therefore, it is of
clinical significance to explore the gut microbiota for the
etiology, pre-diagnosis, and comprehensive treatment of
hepatocellular carcinoma.

It has been shown that dysregulation of the gut
microbiome can be observed in the early stages of chronic
liver disease and, if left unchecked, will promote
progression of chronic liver disecase to hepatocellular
carcinoma [18]. Microbe-associated molecular patterns
(MAMPs) refer to the gut microbiome and its metabolites
as low-level exposures to the liver during disease
progression. When the gut microbiome is dysregulated, the
levels of MAMPs are elevated, which in turn lead to
inflammation and oxidative stress damage in the liver and
even hepatocellular carcinoma by binding to
lipopolysaccharide and its Toll-like receptor 4 (TLR4), as
well as promoting the activation of the NF-kB signaling
pathway and the release of pro-inflammatory factors, such
as tumor necrosis factor (TNF)-a, interleukin (IL)-6, and
IL-1, etc.[19]. In addition, dysregulated gut microbes are
also commonly associated with tumor immunomodulation,
as shown in a cohort study that included 30 patients with
hepatocellular carcinoma, which demonstrated that the
response to immunotherapy, represented by programmed
cell death protein-1, as well as survival benefit, was
correlated with the abundance of the gut microbiota [20].
Therefore, we hypothesized whether some gut
microbiomes could contribute directly or indirectly to
hepatocellular carcinoma by altering the intestinal barrier
and modulating the body's immune response.

In this study, we finally screened 2 gut microbiota that
elevate the risk of hepatocellular carcinoma: Oscillibacter
and unknown genus 826. Although the unknown genus 826
was not identified temporarily, Oscillibacter plays an
important role in the gut. For example, Oscillibacter can
produce short-chain fatty acids by fermenting
polysaccharides such as glucose and modify dendritic cells
with specific caudal lipids from Oscillibacter to alter their
immunomodulatory functions [21]. It has been suggested

that Oscillibacter with higher abundance in the healthy
group may be a potential probiotic to inhibit the
development of colon cancer [22], contrary to the findings
ofthe present study. A prospective study of 75 patients with
early-stage hepatocellular carcinoma and 75 healthy
controls showed that Oscillibacter was significantly more
abundant in patients with early-stage hepatocellular
carcinoma and could be a marker for early-stage
hepatocellular carcinoma [23]. Given the distinct roles
played by Oscillibacter in colon and hepatocellular
carcinomas, the authors hypothesized that gut microbes
brought into play by the gut-liver axis cycle may also be
affected by the hepatocellular carcinoma
microenvironment, thus changing from a probiotic to a
microbe that promotes hepatocarcinogenesis. For example,
Lactobacilli, which were earlier thought to be beneficial to
the gut, were found in subsequent studies to reduce the
body's cytotoxic T-lymphocyte-mediated adaptive immune
response by modulating the cGAS-STING-IFN-I signaling
pathway, affecting the efficacy of radiotherapy in
hepatocellular carcinoma [24].

However, there are some limitations in this study: (1)
unknown genus 826 have not been identified, and their
functions cannot be studied and discussed; (2) more cohort
studies are needed to confirm the causal relationship
between Oscillibacter and hepatocellular carcinoma risk;
(3) the GWAS data studies mainly focus on European
populations, and there are fewer studies on Asian
populations. There may be differences in the level of the
bacterial flora, which is a specific limitation for the
generalization of results; (4) MR analysis initially
investigated the causal relationship between Oscillibacter
and hepatocellular carcinoma, but the specific mechanism
remains to be investigated.

In summary, this study utilized hepatocellular
carcinoma as an exposure factor, selected significantly
associated microbiota—SNPs, as instrumental variables,
and sensitivity analyses revealed no pleiotropy or
heterogeneity, resulting in the finding that Oscillibacter
could promote the risk of hepatocellular carcinoma. This
approach enabled the identification of a causal relationship,
provided candidate genes for gut microbiota in subsequent
functional studies, and excluded the possibility of
bidirectional causality and selection bias.

Conlflict of interest None

Reference

[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.



o W] 5 AR

Chin J Clin Res, June 2024, Vol.37, No.6

[2] Heintz-Buschart A, Wilmes P. Human gut microbiome: function matters[J].
Trends Microbiol, 2018, 26(7): 563-574.

[3] Fan Y, Pedersen O. Gut microbiota in human metabolic health and
disease[J]. Nat Rev Microbiol, 2021, 19(1): 55-71.

[4] Chen YW, Zhou JH, Wang L. Role and mechanism of gut microbiota in
human disease[J]. Front Cell Infect Microbiol, 2021, 11: 625913.

[5] CaiJ, Sun LL, Gonzalez FJ. Gut microbiota-derived bile acids in intestinal
immunity, inflammation, and tumorigenesis[J]. Cell Host Microbe, 2022,
30(3): 289-300.

[6] Chen W, Wen L, Bao YY, et al. Gut flora disequilibrium promotes the
initiation of liver cancer by modulating tryptophan metabolism and up-
regulating SREBP2[J]. Proc Natl Acad Sci USA, 2022, 119(52):
€2203894119.

[7] Schneider KM, Mohs A, Gui WF, et al. Imbalanced gut microbiota fuels
hepatocellular carcinoma development by shaping the hepatic
inflammatory microenvironment[J]. Nat Commun, 2022, 13: 3964.

[8] Albhaisi S, Shamsaddini A, Fagan A, et al. Gut microbial signature of

hepatocellular cancer in men with cirrhosis[J]. Liver Transpl, 2021, 27(5):

629-640.

[9] Hariton E, Locascio JJ. Randomized controlled trials-the gold standard for
effectiveness research[J]. bjog, 2018, 125(13): 1716.

[10] Hemani G, Zheng J, Elsworth B, et al. The MR-Base platform supports
systematic causal inference across the human phenome[J]. eLife, 2018, 7:
€34408.

[11] Kurilshikov A, Medina-Gomez C, Bacigalupe R, et al. Large-scale
association analyses identify host factors influencing human gut
microbiome composition[J]. Nat Genet, 2021, 53(2): 156-165.

[12] Hayes B. Overview of statistical methods for genome-wide association
studies (GWAS)[M]// Genome-Wide Association Studies and Genomic
Prediction. Totowa, NJ: Humana Press, 2013: 149-169.

[13] Sekula P, Del Greco M F, Pattaro C, et al. Mendelian randomization as an
approach to assess causality using observational data[J]. J Am Soc
Nephrol, 2016, 27(11): 3253-3265.

[14] Slatkin M. Linkage disequilibrium-understanding the evolutionary past

and mapping the medical future[J]. Nat Rev Genet, 2008, 9(6): 477-485.

[15] Hartwig FP, Davies NM, Hemani G, et al. Two-sample Mendelian
randomization: avoiding the downsides of a powerful, widely applicable
but potentially fallible technique[J]. Int J Epidemiol, 2016, 45(6): 1717-
1726.

[16] Parker DC, Bartlett BN, Cohen HJ, et al. Association of blood chemistry
quantifications of biological aging with disability and mortality in older
adults[J]. J Gerontol A Biol Sci Med Sci, 2020, 75(9): 1671-1679.

[17] Spoto B, D'Arrigo G, Tripepi G, et al. Serum gamma-glutamyltransferase,
oxidized LDL and mortality in the elderly[J]. Aging Clin Exp Res, 2021,
33(5): 1393-1397.

[18] Schwabe RF, Greten TF. Gut microbiome in HCC-Mechanisms, diagnosis
and therapy[J]. J Hepatol, 2020, 72(2): 230-238.

[19] Nabavi-Rad A, Sadeghi A, Asadzadeh Aghdaei H, et al. The double-edged
sword of probiotic supplementation on gut microbiota structure in
Helicobacter pylori management[J]. Gut Microbes, 2022, 14(1):2108655.

[20] Mao JZ, Wang DX, Long JY, et al. Gut microbiome is associated with the
clinical response to anti-PD-1 based immunotherapy in hepatobiliary
cancers[J ]. J Immunother Cancer, 2021, 9(12): €003334.

[21] Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium
promotes antitumor immunity and facilitates anti-PD-L1 efficacy[J].
Science, 2015, 350(6264): 1084-1089.

[22] Zhang Y, Ma C, Zhao J, et al. Lactobacillus casei Zhang and vitamin K2
prevent intestinal tumorigenesis in mice via adiponectin-elevated
different signaling pathways[J]. Oncotarget, 2017, 8(15): 24719-24727.

[23] Ren ZG, Li A, Jiang JW, et al. Gut microbiome analysis as a tool towards
targeted non-invasive biomarkers for early hepatocellular carcinomalJ].
Gut, 2019, 68(6): 1014-1023.

[24] Li ZJ, Zhang Y, Hong WF, et al. Gut microbiota modulate radiotherapy-
associated antitumor immune responses against hepatocellular carcinoma
Via STING signaling[J]. Gut Microbes, 2022, 14(1): 2119055.

Submission received: 2023-08-12/Revised: 2024-03-20



FE G RBTIE 2024 4E 6 HEE 37 55 6 ] Chin J Clin Res, June 2024, Vol.37, No.6 - 891 -

-iE F -

RUREAS i A& /R BEA L W S R 38 A 1 45 e Y O R

et ERH, LR
1. TR I 2 e B Sl P e 2 SRR 5 P RS HAMRE YT R3¢ 210008
2. HE TR P e b SR P 5 e AR, VTR 5T 210008

WE.BH AR BRI T SRR 221 Fh i Ak 5 IR A7 AR I, S R B TR 4R 3 JEL
Fik i IEU OpenGWAS ¥ i 1) A EE (n= 197 611) V45 R4l , A — T K RIASE 22 ol e 25 [R] 20 DG B
FEM TG BT AR BU B A B (n =18 340) /BN 2 B8 B0 , 2R A3 U7 22 MBLR HEAT 40 BT , AR AR 5007 48 A
P (OR) F1 95% CI VAL S5 L, IR B FH B — ik A0 57 B MEAG 36 A B MR-PRESSO J7 ik AT b bl . R
BRI & ( Oscillibacter) 2 BE FOFETY, AT ARG HIFTFIRE ) FRO AR (OR = 1.411, 95%CI; 1.049 ~1.899, P=0.025)
B — o Mg AR B R o N 2 SRR, T LR R BT SR = AR s Z i () T B AR . &5 R BR B A
55 119 2 [RIAF7E 1 1) A PR SR S6 21 9 LT LAY 3% S5 Jom e AR 7K S 5 TR 22 358 ek R SR A8 2 Ay T H T 7= A B 2 i, 45
I BRTAE OO TE, T DA i AR

KEER: HE; MEREY; BURRE ; SEAR R ERRENLL ; A FEIER 4 S5

HESRS.: R735.7 XHIRIDA: A XZHS. 1674-8182(2024)06-0891-05

Relationship between gut microbiota and hepatocellular carcinoma

through two-sample Mendelian randomization study
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Abstract: Objective To investigate the potential association between 221 types of gut microbiota and hepatocellular
carcinoma (HCC) using a two-sample Mendelian randomization approach, providing insights for the prevention and
treatment of HCC. Methods The HCC data (n=197 611) from the IEU OpenGWAS database was used as outcome
data, while gut microbiota data (n=18 340) obtained from a meta-analysis of a large-scale multi-ethnic genome-wide
association study was used as exposure data. The analysis primarily employed the inverse variance weighting method,
assessing the results based on the odds ratio (OR) and 95% confidence interval ( CI). Quality control was conducted
using leave-one-out analysis, heterogeneity tests, and the MR-PRESSO method. Results An increased abundance of
the genus Oscillibacter was associated with a higher probability of developing HCC (OR=1.411, 95% CI. 1.049-1.899,
P=0.025). Leave-one-out analysis indicated that the study results were stable and no instrumental variables had a strong
impact on the results. This showed a positive causal relationship between gut microbiota and HCC, which could eliminate
the effects of heterogeneity and horizontal gene pleiotropy on causal effect estimation. Conclusion An increased
abundance of the genus Oscillibacter may raise the probability of developing HCC.
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2 7 R

2.1 MAEA MR 547 HEHRE P<5x107, D S i
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Tab. 1 The five MR methods corresponding to gut microbiota

with significant causal relationships in liver cancer

TR J7% nSNP  Beta OR 95%CI P{E
W42 4 R VW 9 0.345 1.411 1.049~1.899  0.025
WME 9 0.276 1.317 0.890 ~1.950 0.167
ME 9 0.059 1.061 0.251~4.478 0.937
SM 9 0.238 1.269 0.740~1.269  0.410
WMO 9 0.243 1.275 0.774~2.100 0.366
826 AW E IVW 7 0.486 1.627 1.163~2.276  0.004
WME 7 0.378 1.459 0.936~2.274  0.094
ME 7 0.090 1.094 0.341~3.507 0.885
SM 7 0.338 1.402 0.749~2.626  0.330
WMO 7 0.350 1.420 0.817~2.466  0.259
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/ MR Egger Weighted mode
Simpie made .
Oscillibacter
03=
.
g
£ .
8
% o1
g .
5 o * =
= e T
g oo .
o
=
w

.
0.150

®

o DIGG a L:TG o IJD a .25
SNP effect on || id:ebi-a-GCSTI0017036

MR Test

Inversa variance weightad (fixed affects) / Weightad median

/ MR Egger

Sitmple mede

Weighted mode

unknown genus 826

B 008s

o
®

SMP effect on hepatocellular carcinema || id:bbj-a-158
g

050 0drs 0.9o0 odzs 0750
SNP effect on || id:ebi-a-GCSTY0017086

TE:A B E ;B 826 HUEYIE .
B2 SiHERARRCERNGIE
ERI 5 Fl MR AL P
Fig. 2 The scatter plots for the five MR models representing

gut microbiota with causal relationships to liver cancer
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Fig. 3 The leave-one-out plot for gut microbiota with

causal relationships to liver cancer
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Tab. 2 The heterogeneity, horizontal pleiotropy test, and MR-PRESSO
results for gut microbiota with causal relationships to liver cancer

P SR K2R MR-PRESSO
o QM PMH P& Raw PH
B4R T 3.114 0.926  0.703  1.098 (1.026~1.176) 0.006

826 W/EYIfE 2.324 0.887  0.516  1.113 (1.008~1.229) 0.032
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