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Abstract: Objective To develop a predictive model using deep learning (DL) techniques based on breast ultrasound grayscale
images and ultrasound elastography, and to explore the diagnostic efficacy of this model in differentiating benign from
malignant breast lesions. Methods A retrospective collection was made of data from 1 000 breast lesions that underwent
surgical treatment at Linyi People's Hospital Breast Surgery Department from May 2020 to April 2021, including ultrasound
images and related clinical pathological information. The ultrasound grayscale images and ultrasound elastography of the
largest section of each lesion were selected and randomly divided into training, validation, and test sets at a ratio of 7:2:1. A
predictive model was constructed based on neural networks using the training and validation sets, and the diagnostic efficacy
of the model was tested with the test set images. Four ultrasound physicians were invited to read the test set ultrasound
images independently, and their diagnostic efficacies were compared with the model's performance. Results The area under
the curve (AUC) value (0.907) of the receiver operating curve (ROC) of DL model for breast lesion diagnosis was higher than all
participating physicians, with a statistically significant difference (P<0.05). The average AUC value for the diagnosis by senior
physicians (0.835) was higher than that for junior physicians (0.719), with a statistically significant difference (P<0.05). When the
model assisted junior physicians and senior physicians in diagnosing the test set breast lesions, the average AUC value was
0.806 and 0.864, respectively. After assistance from the model, the diagnostic efficacy of physicians of different experience
levels improved, with a more significant increase for junior physicians (P<0.05). Notably, there was no statistically significant
difference in the AUC values between the junior physicians assisted by the DL model and the senior physicians reading alone
(P>0.05). Conclusion A predictive model based on dual-modality ultrasound DL can significantly improve the diagnostic
efficacy of physicians in differentiating benign from malignant breast lesions.
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Breast cancer is the most common cancer in females
worldwide, with a relatively high mortality and an
increasing incidence at younger ages. Early and accurate
diagnosis is crucial [1-2]. Ultrasound plays an important
role in the diagnosis and treatment of breast cancer [3].
Breast ultrasound has a high diagnostic value in revealing
basic characteristics such as morphology, margins,
growth patterns and internal echoes of breast lesions [4].
Strain elastography (SE) reflects hardness within breast
lesions and surrounding normal tissues, improving the
specificity and accuracy of breast cancer diagnosis and
decreasing the rate of preoperative breast biopsy [5-7].
However, ultrasound examinations are subjective,
especially in determining ultrasound characteristics and
assessing hardness. The results vary according to the
skills and experience of different physicians [8]. In recent
years, computer-aided diagnosis (CAD) based on deep
learning (DL) has developed rapidly and played an
essential role in medical image processing and analysis,
including breast, thyroid, lung and brain imaging [9-12].
This study aims to construct a predictive model of breast
lesions using DL techniques based on greyscale images
combined with ultrasound elastography, and to evaluate

its potential to assist physicians in improving diagnostic
accuracy.

1. Data and methods

1.1 General data

This retrospective study collected data from 888
patients with breast disease who underwent surgery at the
Linyi People's Hospital Breast Surgery Department from
May 2020 to May 2021. The age of the patients ranged
from 13 to 81 (44.6+11.8) years. A total of 1,000 lesions
with pathological diagnoses were included, including 600
benign and 400 malignant cases. Inclusion criteria
required clear and complete ultrasound images showing
breast lesions and comprehensive clinical and
pathological data. This study retrospectively analyzed the
established clinical imaging and pathological data of the
patients, without interfering with the clinical diagnosis
and treatment, and protecting the privacy of the patients.
This study complied with ethical principles and was
exempt from ethical review.
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1.2 Ultrasound Images

A GE LogiqE9 ultrasound transducer with a
ML6-15-D wideband matrix linear array probe (6-15
MHz) equipped with SE was used. Ultrasound elastic
images of the largest section diameter for each breast
lesion were selected and 1,000 images were randomly
divided into training (n=700), validation (»=200) and test
(n=100) sets in a ratio of 7:2:1, with a ratio of benign to
malignant cases of 3:2 for each set.

1.3 Image pre-processing

Images were cropped based on the sampling frame
size of the elastography, extracting ultrasound grayscale
images and ultrasound elastography including the lesions
and surrounding normal tissue structures. Irrelevant
information such as hospitals and details of patients,
imaging parameters and anatomic marks were removed
for model input. [Figure 1].
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1.4 Building of the predictive model

used to extract different
characteristic parameters from ultrasound grayscale
images and ultrasound elastography. A multi-layer
adaptive feature fusion module was added to the network
structure to merge the feature maps of the ultrasound
grayscale images and the ultrasound elastography. Finally,
a fully connected layer was used for binary classification
of benign and malignant lesions. [Figure 2]. A total of
700 lesion grayscale images and elastography in the
training set were simultaneously fed into the model for
parameter training, with each image having accurate
labels for benign and malignant lesions. The validation
set of 200 lesion images was used to optimize and adjust
the model parameters. A 5-point elastography scoring
method obtained the DL model with the optimal
diagnostic value. Model training was performed using
Pytorch 1.2.0 on the NVIDIA GeForce RTX 2080 8GB
GPU platform.
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Grayscale images

Elastography

1.5 Model testing

Grayscale images and elastography of 100 breast
lesions from the test set were randomly input into the DL
model for diagnostic evaluation. The diagnostic
performance of the model was assessed and the output
consisted of prediction probability of malignancy for each
lesion (ranging from 0 to 1). Using a threshold of 0.5, If
the prediction probability exceeds 0.5, the sample is
predicted to be malignant and labeled as 1; otherwise,
benign and labeled as 0.

1.6 Review of physicians

Four ultrasound physicians with different experience
levels participated in a double-blind review of the
ultrasound images. Physicians 1 and 2, with 15 and 11
years of breast ultrasound diagnostic experience, were
categorized as senior physicians. Physicians 3 and 4, with
3 and 2 years of experience, were categorized as junior
physicians.

The review cases included ultrasound grayscale and
elastography of 100 breast lesions from the test set. Four
physicians reviewed each lesion's ultrasound images for
diagnosis in each of the following two scenarios: (1)
independent review without DL model assistance and (2)
review with DL model assistance. The interval between
the two reviews was 4 weeks. When assisted by the DL
model, physicians could consider the model's prediction
probability of malignancy and corresponding diagnosis,
then accept or reject the model's diagnosis to make their
final decision.

1.7 Statistical analysis

SPSS 26.0 and MedCalc 14.0 were used for data
analysis. General characteristics of benign and malignant
breast lesions were compared using the Mann-Whitney U
test. Pathological diagnosis results from the test set were
used as the gold standard. Sensitivity, specificity,
accuracy, positive and negative predictive values were
calculated for the DL model and the four ultrasound
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physicians. Receiver operating characteristic (ROC)
curves were plotted and the area under the curve (AUC)
was calculated. Differences in diagnostic performance
between the model and the different physicians were
compared using DeLong's test. A significance level of
P<0.05 was considered statistically significant.

2. Results

2.1 General characteristics of patients with breast
diseases and lesions

The characteristic distribution of breast lesions in the
training and test sets was similar. Patients with benign
lesions were significantly younger than those with
malignant lesions (P<0.01). Malignant lesions were
significantly larger in section diameter than benign
lesions (P<0.01). The pathological type distribution of
benign and malignant lesions is shown in Table 1.

2.2 Comparison of DL model and diagnostic
efficacy of physicians with different seniority alone
or in combination

The accuracy, sensitivity, specificity, positive
predictive value, and negative predictive value of the DL
model and physicians of different seniority in diagnosing
100 lesions from the test set based on grayscale images
and elastography are shown in Table 2. ROC curves for
the DL model and physicians' diagnostic results were
plotted, and the area under the curve (AUC) values for
each curve were calculated and compared. The results
indicate: (1) the AUC value of the DL model for
diagnosing breast lesions is higher than that of all
physicians, with a statistically significant difference
(P<0.05); (2) AUC values of independent reviews of
senior physicians are higher than those of junior
physicians, with statistical significance (P<0.05).

2.3 Comparison of efficacy in DL model-assisted
and independent medical reviews
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The accuracy, sensitivity, specificity, positive
predictive value and negative predictive value of
model-assisted and independent medical review are
shown in Table 2. ROC curves were plotted for both

scenarios, and AUC values were calculated and compared.
The results indicate: (1) the diagnostic performance of
physicians with different levels of experience improved
after model-assisted reviews, especially for junior

physicians, with a statistically significant difference
(P<0.05); the improvement in AUC values for senior
physicians was limited and not statistically significant
(P>0.05); (2) model-assisted reviews of junior physicians

achieved diagnostic performance comparable to

independent reviews by senior physicians, with no

Tab.1 General characteristics of breast disease patients and lesions [case(%)]

statistically significant difference in AUC values
(P>0.05). [Figure 4].

Trainingsets+validationsets Testsets

Items Benign Malignant Benign Malignant
Number of lesions 540 360 60 40
Number of images * 1080 720 120 80
Largest section diameter 16+8 24+10 19+9 26+12
<10 mm 90(16.7) 22(6.1) 3(5.0) 3(7.5)
10-40 mm 443(82.0) 305(84.7) 55(91.7) 30(750.0)
> 40 mm 7(1.3) 33(9.2) 2(3.3) 7(17.5)
BI-RADS classification
3 386(71.5) 5(1.4) 41(68.3) 0
4a 118(21.9) 34(9.4) 14(23.3) 5(12.5)
4b 32(5.9) 81(22.5) 4(6.7) 9(22.5)
4c 4(0.7) 177(49.2) 1(1.7) 21(52.5)
5 0 63(17.5) 0 5(12.5)

Pathological diagnosis

Fibroadenoma 405(75.0) 36(60.0)
Adenopathy 79(14.6) 9(15.0)
Intraductal papilloma 27(5.0) 3(5.0)
Mastitis 14(2.6) 5(8.3)
Sclerosing adenosis 5(0.9) 5(8.3)
Fat necrosis 5(0.9) 1(1.7)
Phyllodes tumour 2(0.4) 1(1.7)
Invasive ductal carcinoma 291(80.3) 34(85.0)
Ductal carcinoma in situ 53(14.7) 3(7.5)
Mucinous carcinoma 6(1.7) 1(2.5)
Mixed invasive carcinoma 4(1.1) 1(2.5)
Invasive lobular carcinoma 2(0.6) 1(2.5)
Others 3(0.6) 4(1.1) 0 0

Note:* each lesion has both grayscale images and elastography.

Tab.2 Comparison of diagnostic performance of DL model and physicians with different years of experience, either alone or in combination (%)

Item Sensitivity Specificity Accuracy Positive predictive value Negative predictive value AUC
DL model 82.5 83.3 83.0 87.7 76.7 0.907
Physician 1 87.5 81.6 84.0 76.1 90.7 0.846
Physician 2 85.0 80.0 82.5 73.9 88.9 0.825
Physician3 73.3 70.0 72.0 63.6 78.5 0.721
Physician 4 57.5 81.6 72.0 67.6 74.2 0.717
DL+Physician 1 90.0 85.0 87.0 80.0 92.7 0.875
DL+Physician 2 87.5 83.3 85.0 77.7 90.9 0.854
DL+Physician 3 80.0 81.6 81.0 74.4 85.9 0.804
DL+Physician 4 82.5 78.3 80.0 71.7 87.0 0.808
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Fig.3 ROC curves of diagnostic performance of DL model and physicians with different years of experience
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Fig.4 ROC curve of the diagnostic performance of DL model in assisting physicians in reading films and physicians reading films individually

3 Discussion

Breast ultrasound is widely used in clinical practice.
Ultrasound elastography can improve the diagnostic
accuracy of breast cancer by reflecting the hardness of
lesions and surrounding normal tissues [4,13]. The DL
model constructed in this study achieved satisfactory
results in the classification of benign and malignant breast
lesions.

The basic principle of convolutional neural networks
(CNNs) is to train a kernel to recognize specific features
(convolutional layer). The convolutional layer calculates
the degree of overlap among features between the kernel
and the input images (called the receptive field).
Subsequently, pooling layers and fully connected layers
flatten the data into eigenvectors. The output layer
computes the probability of output classes using a dense
network and a regression function [14]. CNN can analyze
image features at a more detailed and pixel-level
dimension, leading to more accurate diagnoses. In recent
years, many scholars have developed single-DL models
for breast lesion diagnosis, showing high consistency
with expected results. It was found that using CAD based
on conventional 2D ultrasound images to diagnose 266
breast lesions achieved an AUC of 0.81, which was not
significantly different from that of senior ultrasound
physicians (AUC=0.82), but higher than that of junior
ultrasound physicians with an AUC of 0.76 [15]. Li et al.
[16] built a DL model based on a large data set of breast
lesions and found diagnostic performance equivalent to
that of ultrasound experts and significantly superior to
that of junior physicians (AUC=0.66-0.71, P<0.05).
However, models based on 2D greyscale images of breast
lesions alone provide limited information. In this study,
elastography information was involved to improve
diagnostic performance.

A Meta-analysis by Wu et al. [17] found that the use
of strain elastography to diagnose breast lesions resulted
in an AUC of 0.899. Golatta et al. [18] found that the
addition of elastography to conventional ultrasound for
the diagnosis of 4a lesions in 1,288 women with
BI-RADS ultrasound subcategories of 3 to 4c had a
positive impact on the diagnosis of breast lesions. The
number of unnecessary biopsies in breast diagnosis was
reduced by approximately 35.35%, while the leak
detection rate of malignancy was maintained at 1.96%.
All of the above indicates that the use of breast
elastography can provide richer texture information on
lesions, morphological features and information on
hardness, which can enrich the diagnostic basis of the
ultrasound physicians and thus achieve a more efficient
and accurate diagnosis. In clinical practice, there are
subjective and repeated differences in the diagnosis of
solid breast lesions, whether by the elastography 5-point
score or strain ratio method [19-20]. In order to improve
diagnostic accuracy, timeliness and reduce intra-observer
variability, CAD systems are gradually being introduced
into breast ultrasound. In this study, the DL model based
on 2D grayscale images and strain elastography of breast
lesions showed satisfactory results in lesion classification,
outperforming physicians with different levels of
experience (AUC values for the DL model and physicians
ranged from 0.907 to 0.717-0.846). Consistent with our
findings, studies by Misra [21], Zhang [22] and others
show that dual-DL models have a high diagnostic value
for benign and malignant classification of breast lesions.
Therefore, it 1is believed that dual-DL models
incorporating elastography have superior capabilities for
breast lesion classification compared to single DL models
using only conventional 2D grayscale images.

In this study, DL models assisted physicians in
diagnosing breast lesions by allowing them to choose
between the model results and their initial diagnoses
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when disagreed. The results showed improved AUC
values for physicians after DL model assistance (mean
AUC values before and after assistance were 0.777 and
0.835, respectively, P<0.05). Choi et al. [23] asked four
physicians to classify 253 breast lesions using BI-RADS,
and when the DL models were added to conventional
ultrasound, the AUC values (0.91-0.95) were
significantly higher than the AUC values (0.88-0.92)
using conventional ultrasound images alone. Wang et
al.[24] added CAD and SE to conventional ultrasound,
which resulted in a significant increase in the AUC value
from 0.72 to 0.91. In conclusion, using the DL model to
assist physicians in ultrasound diagnosis can improve the
diagnostician's decision-making to some extent, reduce
the number of missed and misdiagnosed diagnoses, and
improve the detection rates of breast cancer.

Although the DL model in this study showed a high
diagnostic value in distinguishing benign from malignant
breast lesions, there are some limitations: (1) the model
only included grayscale and elastography information,
neglecting factors such as blood flow measurements,
contrast-enhanced ultrasound and dynamic imaging. (2)
breast lesions are 3D structures, but this study only
included 2D grayscale and elastography images, not
including coronal sections of tumors, which may
introduce bias due to the subjective nature of the
ultrasound physicians during image acquisition. (3) the
study focused on images of space-occupying lesions,
potentially leading to an overestimation of the diagnostic
performance.

Combining conventional breast ultrasound with
CAD and DL technology can address missed diagnoses
and misdiagnoses due to insufficient physicians’
experience and skills, ultimately improving diagnostic
efficiency. Applying DL methods with robust learning
capabilities and efficient classification to routine
detection and classification of breast ultrasound lesions in
hospitals holds great promise.

Conflict of interest None

References

[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.

[2] He J, Chen WQ, Li N, et al. China guideline for the screening and early
detection of female breast cancer(2021, Beijing)[J]. Chin J Oncol, 2021,
43(4): 357-382. [In Chinese]

[3] Berg WA, Bandos Al, Mendelson EB, et al. Ultrasound as the primary
screening test for breast cancer: analysis from ACRIN 6666[J]. J Natl
Cancer Inst, 2015, 108(4): djv367.

[4] Zanello PA, Robim AFC, Oliveira TM, et al. Breast ultrasound diagnostic
performance and outcomes for mass lesions using Breast Imaging
Reporting and Data System category 0 mammogram[J]. Clinics, 2011,
66(3): 443-448.

[5] Pfob A, Sidey-Gibbons C, Barr RG, et al. Intelligent multi-modal shear
wave elastography to reduce unnecessary biopsies in breast cancer
diagnosis (INSPiRED 002): a retrospective, international, multicentre
analysis[J]. Eur J Cancer, 2022, 177: 1-14.

[6] Zhao QY, Zhao B, Wu G, et al. Value of quantitative parameters of
ultrasound shear wave elastography to the prediction of loco-regional

recurrence of breast cancer after systemic therapy[J]. J Chin Pract Diagn
Ther, 2023, 37(4): 377-382. [In Chinese]

[7]1 Dong M, Zhang BY, Xing BY. Application progress of ultrasound
elastography in breast diseases[J]. China Med Her, 2022, 19(22): 42-45,
61. [In Chinese]

[8] Secco GM, Gutierrez PA, Secco VL, et al. Is breast ultrasound a good
alternative to magnetic resonance imaging for evaluating implant
integrity?[J]. Radiologia, 2022, 64(Suppl 1): 20-27.

[9] Yoon J, Lee HS, Kim MJ, et al. AI-CAD for differentiating lesions
presenting as calcifications only on mammography: outcome analysis
incorporating the ACR BI-RADS descriptors for calcifications[J]. Eur
Radiol, 2022, 32(10): 6565-6574.

[10] Xie F, Luo YK, Lan Y, et al. Differential diagnosis and feature
visualization for thyroid nodules using computer-aided ultrasonic
diagnosis system: initial clinical assessment[J]. BMC Med Imaging,
2022, 22(1): 153.

[11] Shafi I, Din S, Khan A, et al. An effective method for lung cancer
diagnosis from CT scan using deep learning-based support vector
network[J]. Cancers, 2022, 14(21): 5457.

[12] Ishihara M, Shiiba M, Maruno H, et al. Detection of intracranial
aneurysms using deep learning-based CAD system: usefulness of the
scores of CNN’s final layer for distinguishing between aneurysm and
infundibular dilatation[J]. Jpn J Radiol, 2023, 41(2): 131-141.

[13] Wang HX, Long ST, Song ZJ, et al. Ultrasound-guided localization
technique in the diagnosis of breast tumors[J]. Chin J Clin Res, 2022,
35(9):1227-1232.[In Chinese]

[14] Mao YJ, Lim HJ, Ni M, et al. Breast tumour classification using
ultrasound elastography with machine learning: a systematic scoping
review[J]. Cancers, 2022, 14(2): 367.

[15] Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in
medical image analysis[J]. Med Image Anal, 2017, 42: 60-88.

[16] Li JM, Bu YY, Lu SQ, et al. Development of a deep learning-based
model for diagnosing breast nodules with ultrasound[J]. J Ultrasound
Med, 2021, 40(3): 513-520.

[17] Wu HY, Wang C, An Q, et al. Comparing the accuracy of shear wave
elastography and strain elastography in the diagnosis of breast tumors: a
systematic review and meta-analysis[J]. Medicine, 2022, 101(44):
e31526.

[18] Golatta M, Pfob A, Biisch C, et al. The potential of combined shear
wave and strain elastography to reduce unnecessary biopsies in breast
cancer diagnostics - An international, multicentre trial[J]. Eur J Cancer,
2022, 161: 1-9.

[19] Bi WP, Shi Y, Wang LL, et al. Clinical value of ultrasonography
combined with shear wave elastography for theassessment of molecular
subtypes of breast cancer[J]. Chinese Journal of General Practice,
2023,21(12):2009-2013. [In Chinese]

[20] Xin BY, Dong M, Fu CH, et al. Differentiate diagnostic value of strain
elastography technology for breast BI-RADS 4A type nodules[J]. China
Med Her,2023,20(34):180-184. [In Chinese]

[21] Misra S, Jeon S, Managuli R, et al. Bi-modal transfer learning for
classifying breast cancers via combined B-mode and ultrasound strain
imaging[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2022, 69(1):
222-232.

[22] Zhang Q, Song S, Xiao Y, et al. Dual-mode artificially-intelligent
diagnosis of breast tumours in shear-wave elastography and B-mode
ultrasound using deep polynomial networks[J]. Med Eng Phys, 2019, 64:
1-6.

[23] Choi JS, Han BK, Ko ES, et al. Effect of a deep learning

framework-based computer-aided diagnosis system on the diagnostic

performance of radiologists in differentiating between malignant and benign

masses on breast ultrasonography[J]. Korean J Radiol, 2019, 20(5): 749-758.

[24] Wang YQ, Tang L, Chen PP, et al. The role of a deep learning-based
computer-aided diagnosis system and elastography in reducing
unnecessary breast lesion biopsies[J]. Clin Breast Cancer, 2023, 23(3):
ell2-el21.

Submission received: 2023-12-07 / Revised:2024-01-29



G EBFIE 2024 453 A5 37 55 3 8 Chin J Clin Res,March 2024, Vol.37, No.3 + 365 -

S

KA 785 e TR B2 2 > T A 1Y 12 Wy 2L 9 1) 1oz

FppE', RBR, #eE
1. M ERMRF I U T AR BEBEBFSE AL 5 3 5, ILZR I UT 2760005 2. I YT A R EE RO B4R, WA IGIF 276000

E: BR R T 2L KB B G FT L FRG 0 PR B 2% 2] (DL) FE AR S — AN TN ALY, - R A
FEFLIR KL OGS R 2 e . iR MU ICE 2020 4F 5 5 % 2021 4 4 H FilsUr i AR EREFLARSM
BHEZ T ARIBYT A ZLIRP AL 1000 A, A48 i 75 [R5 SKORE SC Im PR e B 5% 8}, e 488 451> kb e I D) THD 198
FEORBY EUR B PR G e R T = 2+ 1 (W L BREATLKE 5 kL 43S I R4 L B0AE A AN 4 5 107 FH I 5 46 A6 TE 4 1
375 L LG 5 o 2 ) 206 Ay Sl T ASE 28 i R0 X 8 e PR A I A 28 1 12 W3 R 5 386 35 U A6 8 7 B A 4 ) ] 352
AR EE A B 7 G, LA R SORRAE R R AR Z (B IS Wik B . 4558 DL 70 I A4S 38U X LR k2 W 1Y) 22
W TAERMERZE (ROC) 4k T HEIFR(AUC) {H (0.907) & T A A, 25 5 A Gi it 2 L (P<0.05) 5 S 4E 3T =
Az AR 2 Wi T34 AUC {E.(0.835) i FARAE BT EEAE (0.719) , 22 5 A3 BT 223 L (P<0.05) . AR 7% B IR AE
FEEE A WAL FL AR A 24 AUC (B 0.806 , 452 7Y 4 Bly /55 4 B 1= 25 12 W DU 412 2L I 95 1t ~F- 38 AUC By
0.864 , Zed SR B B8] F 5 , N [RVAE 9% B2 AR 112 Wl R XA $2 7 WHMIRAE SR R 4R AUC {HERFHIR A i, 22 5
it X (P<0.05) . DL MRV BIIRARE BT AR I i 5 H AUC B 5 S AR B R A fpopl ] Jr AUC {8 s 5+ o4 it
Y (P>0.05) . &5it I T RUEAHE R DL FINAR A AT LS 2545 5 PR A X LA b OB 2 B2 Wi et
KR WEEFT MM, ZUMYE; B85 KT ENR; MRS AR, N T8

hE4SFES. R737.9 TP391.4 THEIFRIGAD: A XEHS . 1674-8182(2024)03-0365-06

Application of dual-modality ultrasound deep learning predictive

model in diagnosing breast cancer
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Abstract: Objective To develop a predictive model using deep learning (DL) techniques based on breast ultrasound
grayscale images and elastography, and to explore the diagnostic efficacy of this model in differentiating benign from
malignant breast lesions. Methods Data of 1 000 breast lesions from patients who underwent surgical treatment at Linyi
People’s Hospital Breast Surgery Department from May 2020 to April 2021 were collected retrospectively. including
ultrasound images and related clinical pathological information. The ultrasound grayscale image and elastography of the
largest section of each lesion were selected and randomly divided into training, validation, and test sets at a ratio of 7 :
2 : 1. A predictive model was constructed based on neural networks using the training and validation sets, and the
diagnostic efficacy of the model was tested with the test set images. Four sonographers were invited to read the test set
ultrasound images independently, and their diagnostic efficacies were compared with the model’s performance. Results
The area under the curve (AUC) value (0.907) of the receiver operating characteristic curve (ROC) of DL model for
breast lesion diagnosis was higher than all participating sonographers, with a statistically significant difference ( P<
0.05). The average AUC value for the diagnosis by senior sonographers (0.835) was higher than that for junior
sonographers (0.719) , with a statistically significant difference ( P<0.05). When the model assisted junior sonographers

and senior sonographers in diagnosing the test set breast lesions, the average AUC value was 0.806 and 0.864, respectively.
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After assistance from the model, the diagnostic efficacy of sonographers of different experience levels improved, with a

more significant increase for junior sonographers (P<0.05). Notably, there was no statistically significant difference in

the AUC values between the junior sonographers assisted by the DL model and the senior sonographers reading alone

(P>0.05). Conclusion

A predictive model based on dual-modality ultrasound DL can significantly improve the

diagnostic efficacy of sonographers in differentiating benign from malignant breast lesions.

Keywords: Deep learning; Neural network; Breast cancer; Ulirasound; Elastic imaging; Grayscale image; Prediction

model; Artificial intelligence

FLIE I 2R M o i e IR REE , BOE R
i, B ARE B ] AR 5240, FDTRS HE 12 W 225G H
B UM A KA AT LR FLR A IR A L
Gk AT A N BB 1] 75 A A% TR AR, BAT AL i
IS 5 P 8 A R 1A% T LA S B 2L 9
AR R S i A A R R EE £ UL, A M) T4 s LB 12 Wi
AR L AR ) R, P A A A A — R
T, JCTHORS L i 2% el 7 AR A 1 5 S
T RE A5 EPPAG ZEAS R B A Z A AE—E 25 57, L3R
T T AR UE (5 o NIV 2L o0 AL S I = e 8
TR % 2] (deep learning, DL) Yy 3+55 44 B2 I
( computer-aided diagnosis, CAD) ¥ R %k J& , 717
PR FFCBR R i A S AR AL BT A
WP R AR AN o ABIFTEAEE T LI b K B
PEMEI 5 1 A8 95 [R5 R T DL B by T A5 2
FEPEAEHBE S B B A 4 = 2 R %2 .

1 ABST®

L1 —f A AW sbE e 2020 45 H &
2021 4 4 HFiEUr i N R E B FLIRSNEF g2 I 452
TFARIGYT Y 888 (| FLARPENG B AE WS 13~81(44.6+
11.8) % ;L4451 .000 A~45 1 VIS B2 Wi i g A,
B R 600 4>, EE 400 A4S, g ARRHE: (1) HE S
Baeit i B o8 o oR FLARME kR, (2) I PR B B ¢
BETERE . ABIFGEAN ] B o A A R A I RS 14
ERETOR, N TG RGN BB B A5 5
T S, FRASFR AL T e

1.2 & EF /G R GE Logiqk9 A2 WL, #i32
6~ 15 MHz 1 s L R Sk ML6-15, HL 4% iy 7% 5t
PR T RE . IR AN LRI kb o R LA 1) T )
PR EUR, 2L 1000 HFEGHE 7 2 2 2 1 BEHLS A
ZAE(n=700) JiEEE (n=200) Kl (n=100)
S AR GBI 3 2,

1.3 B DU R i SBOREAE /N R b
W, VIR BEION B e 7 PR A5 B ik R A 5 kb %
L BB A 1E 8 S5 R UG, RBRwIin BUg b A

KEEBE R A BIAHOCAR B AR U S8 AR bRl
SENES, DL AR AR DL 1,

L4 M aEAl SR ResNet-101 4125 ¥ 4 43 5]
FEIBGER 7R i PRUAGR A (15 b ) 2 R R IE S48, B
FHE R JZ2 AN 3 0 265 2548 v LARR G R I PG 55
PEEMR A RAE R, i d i o 264 2 ATk )
AT . LI 2, YNZRAE T00 Ak K
W LG R P G R i AR A T S80I 25, B
R R A R IR H AR 2, IR 4R 200 M5
SR R T B A A 28, i T T 38 gk
0715 AR ICEAT e AR 12 B AL RE FIUMIASE Y, 4 44 4 DL
A A ALY 2k W Pytorchl.2.0 SE ¥, %+ 8GB
NVIDIA GeForce RTX 2080 GPU E£,

VRSISEES kIR
B 1 gLk
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Tab. 1 General characteristics of breast disease patients and

lesions [ case( %) ]
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Tab. 2 Comparison of diagnostic performance of DL model and
doctors with different years of experience,

either alone or in conbination (%)

JH U PR ERE FHPERONE BIPERONE AUC

DL 71 82.5 83.3  83.0 87.7 76.7 0.907
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DL+EH:4 825 783  80.0 71.7 87.0 0.808
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Fig. 3 ROC curves of diagnostic performance of DL

TR (%)

model and doctors with different years of experience
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Fig. 4 ROC curve of the diagnostic performance of DL model in assisting doctors in

reading films and doctors reading films individually
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