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Abstract: The genetic mechanism of congenital heart disease (CHD) is complex and currently lacks a clear
understanding. Literature studies on CHD often report the presence of concurrent extracardiac anomalies,
but since the majority of CHD cases are isolated, presenting only a single cardiac malformation, the
etiological mechanisms remain uncertain, especially regarding the genetic aspects. Furthermore, there is a
scarcity of case studies focusing on isolated CHD, resulting in a lack of comprehensive research data.
Therefore, elucidating the genetic causes of isolated CHD and providing guidance for its clinical treatment
have become urgent issues for researchers. This article reviews the known genetic causes and potential
genetic mechanisms of isolated CHD, as well as provides recommendations for genetic testing in patients

with isolated CHD.
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Congenital heart disease (CHD) refers to abnormal
development of the heart and large blood vessels during
the early fetal process, or anatomical abnormalities of
the heart and blood vessels caused by channel closure
disorders. CHD includes a variety of cardiac
malformations, which are usually grouped according to
the nature of cardiac structural malformations, blood
flow patterns, recurrence risks, and related
susceptibility genes. According to whether other organs
are involved, CHD is divided into syndromic CHD and
isolated CHD. The former usually merges with other
system defects, such as developmental delay,
intellectual disability, etc., while the latter is only a
single cardiac defect without congenital defects in other
systems. About 40% of CHD can identify known
genetic factors, but still about 50% of CHD cannot
determine the clear pathogenesis. For isolated CHD,
because the lesions only involve a single cardiac defect
without affecting other organ systems, coupled with the
genetic heterogeneity, penetrance, and the influence of
multiple genes and other non-genetic factors of CHD,
the proportion of identifiable genetic factors is lower.

1 Epidemiological Characteristics of CHD

CHD is a common birth defect in the world and one
of the main causes of neonatal death. The incidence rate
in live-born infants is about 1%. Isolated septal defect is
the most common type of CHD, and it is estimated that
there are 3,570 cases of septal defect per million
newborns. There are approximately 200,000 newborns
with CHD born in China every year. With the

advancement of surgical techniques, the probability of
CHD patients surviving to adulthood after one year of
age has greatly increased, but CHD remains the leading
cause of death from birth defects. About 40% of CHD
can be attributed to genetic causes, including 10% with
severe aneuploidy, 25% with pathogenic copy number
variations (CNV), and 5% with monogenic diseases.
For isolated CHD, which is less frequently studied in
the literature, existing studies have also revealed that
pathogenic CNVs can account for 10% [1].

2 Evidence of Genetic Basis of CHD

The view that the occurrence of CHD is closely
related to genetic factors, environmental factors, and the
interaction between them is widely recognized by
scholars. Bruneau et al. [2] found that the possibility of
normal phenotype couples having CHD children again
when they have already had CHD children is about 3%,
and the incidence of CHD increases with the increase of
birth times, reaching 10%. In addition, there are
differences in the incidence of CHD among different
genders and races. Overall, some types of CHD are
more likely to be found in European races, and the
severity of male lesions is higher. Studies have shown
that CHD is prone to form family clustering. The
possibility of twins with CHD is 6 times higher than that
of ordinary infants. About one-third of the CHD
phenotypes can be explained from the perspective of
family inheritance, indicating that genetic factors play
an important role in the occurrence and development of
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CHD [3]. The pathogenesis of CHD is complex and
lacks a deep understanding of genetic mechanisms.
Among the known variations, chromosomal aneuploidy,
CNYV, and single-gene mutations usually disrupt genes
that play important roles in normal heart development,
leading to the occurrence of CHD. However, only 20%
of cases can be attributed to a single genetic factor, and
the proportion of identifiable single genetic factors
causing isolated CHD is even lower [4-5]. With the
advancement of next-generation sequencing technology
and the emergence of innovative genetic assessment
methods, more and more genetic variations have
attracted the attention of researchers and been included
in the list related to isolated CHD. Researchers are eager
to find evidence related to isolated CHD by
understanding the key CNVs or genes that play a crucial
role in syndromic CHD, so as to identify the genetic
etiology of isolated CHD.

3 Single Gene and Isolated CHD

Sufficient research evidence has shown that the T-
box family series (TBXI, TBX5, TBX20), SMAD2,
SMADG6, NKX2.5, MYH6, MYH?7, etc., play a regulatory
role in the temporal and spatial expression throughout
the process of heart development, especially playing a
key role in the initial differentiation of atrioventricular
chambers, the formation of ventricles, and the septum
of the heart [6-9]. For isolated CHD, due to the
influence of multiple factors such as genetic
heterogeneity and incomplete segregation, the
frequency of gene mutations is much lower than that of
syndromic CHD, indicating that the genetic mechanism
of isolated CHD is different from syndromic CHD [10].
Earlier studies identified genes that cause CHD,
including NKX2.5, TBX5, GATA4, etc. [11], which play
an important role in the heart development process of
CHD fetuses. These genes are mainly discovered
through linkage analysis and positional cloning and may
lead to defects in the cardiac conduction system [12]. In
recent years, with the gradual promotion and use of
genome sequencing methods, the types of genes related
to patients with isolated CHD have rapidly increased.
Unlike syndromic CHD, most of the identified genes are
transcription factors, signaling molecules, and structural
proteins [13]. Current evidence has proved that there is
a correlation between single genes and isolated CHD,
and as the list of mutations rapidly expands, the single-
gene genetic mechanism of isolated CHD will gradually
become clearer.

3.1 Structural Proteins

A recent study involving over 4,000 CHD patients
in Europe has uncovered new evidence related to CHD.
Among these, MACROD2, previously considered
unrelated to CHD but closely associated with cancer, is

now believed to be highly expressed in heart cells.
Additionally, the study identified GOSR2, WNT3, MSX1,
and Ythdc?2 as playing transcriptional regulatory roles in
certain CHD conditions such as aortic stenosis, patent
ductus arteriosus, and transposition of the great arteries
[14]. Notably, a newly discovered coding gene, CDknlA,
has also been implicated in cardiovascular biology-
related gene regions [15]. However, the specific targets
and potential mechanisms of these candidate genes
remain unexplained.

3.2 Transcription Factors

Currently, transcription factors are considered
major contributors to syndromic CHD. Among the
known transcription factors, NKX2.5 was the first gene
discovered to be associated with CHD. Mutations in
NKX2.5 primarily manifest as atrial septal defects,
accounting for approximately 4% of isolated CHD cases.
The mechanism underlying CHD caused by NKX2.5
may involve reduced DNA binding activity due to base
mutations, leading to transcriptional repression and
affecting heart development [16]. Another example is
TBX-5 from the T-box family, which acts as a dose-
sensitive  factor regulating heart development.
Mutations in 7BX-5 can lead to Holt-Oram Syndrome,
an autosomal dominant genetic disease. KLFI3 can
synergistically activate cardiac gene transcription with
TBX-5. Furthermore, data confirm that KLF13 modifies
TBX-5 in Holt-Oram Syndrome, suggesting similar
roles for both genes in syndromic CHD [17].
Additionally, mutations in KLF'13 disrupt its synergistic
interaction with the GATA family [18], which has been
implicated in isolated CHD, such as GATA4 mutations
leading to various CHD formations, including
atrial/ventricular septal defects, patent ductus arteriosus,
tetralogy of Fallot (TOF), and endocardial cushion
defects [19-20].

3.3 Cell Signaling Pathways

Evidence suggests that signaling pathways play
crucial roles in the formation of cardiac progenitor cells
and three-dimensional heart structures. In a study of
over 2,000 patients with isolated CHD, a mutation in
PTPNI1I was identified in a female patient. Although
this indirectly suggests that PTPNII is not a major
genetic cause of isolated CHD, it should not be
overlooked that dysregulation of the RAS-MAPK
signaling pathway is closely associated with the
development of atrial septal defects and double inlet left
ventricle [21-22]. Notably, isolated pulmonary valve
stenosis is often present in patients with Noonan
syndrome and is associated with PTPNII gene
mutations [23]. Additionally, the Notch signaling
pathway plays a vital role in the development of
embryonic structures and organs, including the heart
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[24]. Studies have shown that variations in Notch
pathway genes can lead to cardiac abnormalities and
isolated or syndromic CHD. Specifically, in patients
with isolated tetralogy of Fallot, 4.5% carry a
heterozygous mutation in NOTCHI, which is
considered the most common genetic variant
predisposing to isolated TOF [25]. Another variant,
DLL4, was initially classified as a variant of unknown
significance due to its early failure to meet the
pathogenicity threshold. However, recent research on a
family with isolated tetralogy of Fallot found that DLL4
variations may be harmful to protein function, leading
to CHD [26]. Furthermore, the transforming growth
factor (TGF)-p family of signaling pathways is crucial
for heart development, with genes such as BMP-2,
BMP-4, TGF-p2, TGF-$3, and Nodal implicated.
Studies have identified various isolated CHD-related
malformations, including dextroposition of the great
arteries, double outlet right ventricle, TOF and isolated
ventricular septal defects [27-28].

3.4 Ciliopathies

Cilia are cellular organelles that play crucial roles
in cell signaling during embryonic development.
Currently, abnormalities in ciliary structure or function
have been associated with CHD. In certain CHD
conditions, such as atrial septal defects and
atrioventricular canal defects, primary cilia have been
found to disrupt the Shh signaling pathway during heart
development, leading to isolated CHD [29].
Additionally, genes expressed in ciliated cells of the
respiratory and nervous systems, such as Foxjl, can
cause hydrocephalus and airway diseases. Recent
studies have reported that FoxjlI variants, confirmed by
whole-exome sequencing (WES) and functional testing,
can cause abnormal cardiac circulation, leading to
isolated CHD [30].

3.5 Modifier Genes

Zaidi et al. [31] found in their study on patients
with severe CHD that approximately 10% of novel
mutations were associated with methylation in H3K4.
Among them, eight patients with H3K4 methylation had
different CHD phenotypes. The study also confirmed
that H3K4 methylation disrupted heart development,
and its mechanism was related to the regulation of key
heart development genes. Studying modifier genes like
H3K4 methylation helps the further understanding in
the pathogenesis of CHD, especially isolated CHD.

4 CNV and Isolated CHD

CNV is a common type of chromosomal structural
abnormality, and pathogenic CNV is also an important
cause of CHD. Besides causing common syndromic
CHD such as Digeorge syndrome and Williams

syndrome, it can also cause isolated CHD [32-33].
Some literature reports that CNV can affect heart
development by altering gene dosage levels or functions,
leading to the occurrence of syndromic CHD. The most
common ones include 22ql11.2 microdeletion and
15q11.2 microdeletion, which can be accompanied by
varying degrees of neurological disorders and
developmental delays [34-35]. A study on the
pathogenic relationship between CNV and CHD found
that the proportion of CHD fetuses with pathogenic
abnormalities associated with extracardiac
malformations could reach 30% [36]. Apart from being
closely related to syndrome CHD, researchers have
found in their studies on isolated CHD that the
incidence of pathogenic CNV in isolated CHD is about
5.7%. Some CNV fragments smaller than 5 Mb can also
lead to isolated CHD, such as Xp22.2 and 8p23.1, which
can lead to atrioventricular septal defects, TOF, and
other CHD. The most likely genetic cause of left/right
ventricular outflow tract obstruction is related to
microdeletion and microduplication [37-38]. According
to literature reports, although the chromosome
abnormality rate of isolated CHD is significantly lower
than that of CHD combined with extracardiac
abnormalities, the positive diagnostic rate of
chromosome abnormalities still reaches 8.4%-9.6%
[39-40]. In addition, researchers have detected several
rare and newly-identified CNVs in isolated CHD
children, which contain genes required for heart
development, such as TBXI, JAGI, NOTCHI, etc.
Researchers believed that about 10% of isolated CHD
might be caused by genes in these regions [41]. Kim et
al. [42] found in a cohort study of isolated CHD
children that the incidence of newly-identified large
CNVs in isolated CHD children was much higher than
that in normal children, and children carrying such
CNVs usually had poor prognosis, which may be related
to the synergistic effect of genes in the region.

5 Mosaicism and Isolated CHD

Syndromic CHD often merges with neurological
and motor system abnormalities, presenting with multi-
organ symptoms such as developmental delay,
intellectual disability, and craniofacial malformations.
This type of CHD is the first to be widely studied due to
its involvement in multiple system abnormalities and
significant harm. Existing cytogenetic studies have
shown that approximately 20% of CHD cases are
diagnosed prenatally with chromosomal number and
structural abnormalities. Foreign scholars' research has
also shown that the proportion of syndromic CHD in
patients with common chromosomal aneuploidy such as
trisomy 21 and Turner syndrome is approximately 20%
to 50% [43]. Compared with syndromic CHD, the
genetic basis of isolated CHD is more complex.
Existing cytogenetic studies have shown that mosaicism
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individuals may have coronary heart disease without
related syndrome characteristics. Any 45,X mosaic cell
line may increase the risk of isolated CHD [44-45]. A
study of heart tissue in CHD patients suggests that the
mutation frequency of transcription factors such as
NKX2.5, GATA4, TBXS5, MEF2C, and HEY?2 detected by
heart tissue sampling is significantly increased,
indicating that mosaicism plays an important role in
isolated CHD. In addition, some studies suggest that
there is a dose-dependent relationship between the X
chromosome and autosomal genes or aortic
development loci. When the gene dose of the X
chromosome is reduced, the inactivation of the X
chromosome during development leads to the
occurrence of CHD [46-47]. Furthermore, studies have
found that mosaicism of chromosome 16 can also cause
isolated CHD in fetuses [48]. Early ultrasound suggests
an increase in nuchal translucency, which may be
caused by cardiac dysfunction. Research suggests that
the formation of chromosomal mosaicism may be
related to "trisomic rescue," and the severity of clinical
symptoms may be related to the mosaic ratio, which
means that low-level mosaicism may occur in isolated
CHD.

6 Detection Methods of Genetic Etiology of CHD

The genetic mechanism of CHD is complex, but
existing research results have confirmed that genetic
factors can lead to the occurrence of CHD, indicating
that it plays an important role in the occurrence and
development of CHD. However, due to the high
heterogeneity of CHD and its wide phenotypic spectrum,
as well as the difficulty in identifying malformed
features during the heart development of newborns and
infants, and the lag of cognition, it is more difficult to
find the pathogenesis of CHD genetic factors. Recent
research results show that next-generation sequencing
technology is gradually expanding the screening range
of CHD and providing new insights for further
understanding the molecular mechanism of isolated
CHD. Currently, when CHD is found by ultrasound and
accompanied by varying degrees of extra-cardiac
malformations, karyotype testing has become a
consensus in the industry. In addition, when CHD is
clinically considered to be associated with aneuploidy
or 22ql.2 deletion, fluorescence in situ hybridization
with obvious advantages can be selected for rapid
prenatal diagnosis. Chromosomal microarray analysis
(CMA) or CNV-seq is currently widely used for short-
cycle, high-resolution detection of CNVs larger than -
100 kb, and has obvious cost-effectiveness in health
economics. Current research results show that CMA or
CNV-seq detection of various types of samples can
increase the detection rate of pathogenic CNVs to 3%
[50]. Although the selected CNVs are not always
pathogenic, they may be familial, which is very

important for finding the etiology of CHD. For negative
CMA or CNV-seq tests, but CHD has obvious genetic
etiology, WES can be performed to screen potential
results and obtain more candidate protein-coding genes
for isolated CHD [51]. It should be noted that clinically,
genetic counseling capabilities should be provided for
variants of uncertain significance (VOUS) and the
possibility of secondary findings. In addition to WES,
whole genome sequencing (WGS) has demonstrated
technical advantages superior to WES, enabling the
detection of mitochondrial sequences, mRNA, non-
coding RNA, as well as promoters and regulatory
sequences. WGS may be proven to have a higher
diagnostic rate than WES and be widely used for
diagnosing the genetic etiology of CHD. The use of
rapid WGS in children with CHD can enable rapid
treatment and reduce medical costs for this pediatric
population. Furthermore, functional genomic studies
using  single-cell RNA sequencing, chromatin
immunoprecipitation (ChIP)-seq, and assay for
transposase-accessible chromatin (ATAC)-seq can also
reveal the complex intrinsic genetic networks of CHD
and elucidate the effects of specific cardiac lineages
during early heart development.

7 Issues Faced by Isolated CHD Research

Due to the numerous genes that lead to CHD and
the possible overlap between genes causing syndromic
CHD and isolated CHD, it is more challenging to
identify the genetic factors of isolated CHD. The
phenotypic heterogeneity of CHD, that is, the same
genetic sequence variation usually results in 50% of
patients not always having the same cardiac phenotype.
It is worth noting that due to the influence of epigenetics
and mitochondrial inheritance, a comprehensive
understanding of the genetic factors of isolated CHD
still needs to consider the relationship between
penetrance and pathogenic factors. In addition, since
extracardiac malformations usually occur later than
intracardiac malformations, it becomes particularly
important to continue medical follow-up for patients
with isolated congenital CHD caused by syndrome-
related genes.

8 Prospects

Currently, research on isolated CHD is insufficient
both domestically and internationally, and due to the
involvement of environmental and genetic factors in the
pathogenesis of CHD, it is difficult to explain the
genesis of most CHD through a single study, and further
research is needed. Although there is abundant evidence
that isolated CHD is affected by genetic factors,
research on isolated CHD still mostly focuses on genetic
testing. Using mouse models with isolated CHD gene
mutations will be an important means to study the
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mechanism of mutant genes. Through the study of
animal models, perhaps new methods for clinical
treatment of isolated CHD can be found to improve the
prognosis of isolated CHD.
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Genetic causes of isolated congenital heart disease
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Abstract: The genetic mechanism of congenital heart disease (CHD) is complex and currently lacks a clear understanding. Literature
studies on CHD often report the presence of concurrent extracardiac anomalies, but since the majority of CHD cases are isolated,
presenting only a single cardiac malformation, the etiological mechanisms remain uncertain, especially regarding the genetic aspects.
Furthermore, there is a scarcity of case studies focusing on isolated CHD, resulting in a lack of comprehensive research data. Therefore,
elucidating the genetic causes of isolated CHD and providing guidance for its clinical treatment holds significant research value in the field
of CHD. This article reviews the known genetic causes and potential genetic mechanisms of isolated CHD, as well as provides
recommendations for genetic testing in patients with isolated CHD.
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