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Abstract: Ultrasound is the first-line screening method for breast cancer screening. The application of BI-RADS makes the
ultrasound diagnosis of breast diseases relatively consistent, but it is still affected by subjective factors of operators. With the
advancement of computer technology and the arrival of the era of big data, artificial intelligence has developed to the stage
of deep learning. The performance of computer-aided diagnostic models based on deep learning has been continuously
improved from2Dstatic image analysis to dynamic capture of lesions and keyframe analysis to automatic breast volume
scanning and multi-modal research. The use of artificial intelligence in ultrasound can ease the strain caused by the lack of
sonographers, help sonographers increase the consistency and accuracy of diagnosis, and play an important role in the

process of breast cancer screening, diagnosis and treatment.
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Global cancer statistics 2021 showed that there were
approximately 2.26 million new cases of breast cancer
each year, making it the leading cancer globally [1]. Early
detection, diagnosis, and accurate treatment of breast
cancer can not only increase patients' survival rates, but
also reduce the economic burden on families and
healthcare systems [2]. Ultrasound is the primary
screening method for breast cancer in China, with
convenience, affordability, and safety. However, it lacks
consistency and repeatability. With the development of
artificial intelligence (Al), utilizing Al systems to assist
ultrasound doctors in disease diagnosis has improved the
consistency and accuracy of ultrasound diagnosis. This
can also alleviate issues such as shortages of sonographer
and repetitive image readings, potentially making it an
important screening method for breast diseases in the
future.

1 Screening Methods for Breast Cancer

Currently, common detection methods for breast
cancer include X-ray examination, ultrasound
examination, MRI examination, and histopathological
biopsy. Among these, X-ray and ultrasound examinations
are the most commonly used screening methods.

Ultrasound plays a crucial role in breast cancer
screening in China, especially for women with dense
breasts. 2D ultrasound is used to assess the nature of
breast nodules based on characteristics such as margins,
morphology, internal echoes, and microcalcifications.
Benign nodules usually exhibit regular shapes and
uniform internal echoes, while malignant nodules exhibit

irregular shapes, angular margins, spicules, halos,
changes in internal low echoes, microcalcifications,
posterior acoustic attenuation, increased blood flow
signals, high resistance index, and disordered ductal
structures [3-4]. Microvascular ultrasound imaging is an
emerging and unique Doppler ultrasound technique that
provides superior visualization of small blood vessels in
tissues, offering more information about vascular
structures to doctors [5]. Studies had not found significant
difference in diagnostic performance between contrast-
enhanced ultrasound and superb microvascular imaging
in the diagnosis of breast lesions, but superb
microvascular imaging showed potential in the
differential diagnosis of breast lesions [6].

Single-mode ultrasound cannot fully reflect the
characteristics of breast lesions. With the emergence of
new ultrasound technologies such as elastography,
contrast-enhanced  ultrasound, automated  breast
ultrasound, and ultrasound-mediated optical tomography,
multimodal model can complement each other, providing
more comprehensive information for diagnosis. Studies
comparing conventional ultrasound with multimodal
ultrasound showed that the sensitivity, specificity,
positive predictive value, and negative predictive value of
multimodal ultrasound were 93.4%, 94.2%, 90.5% and
96.1%, respectively, which were significantly higher than
those of conventional ultrasound, contrast-enhanced
ultrasonography, and elastography [7].

Breast cancer ultrasound screening in China mainly
relies on manual handheld scanning probes, which cannot
establish a standardized screening database. The levels of
physician expertise vary, resulting in poor consistency
and repeatability. Strengthening training to improve
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physician diagnostic skills and developing Al to replace
some sonographers are important strategies to promote
universal breast ultrasound screening.

2 Al Ultrasound-Assisted Breast Cancer
Screening

2.1 Development of Al

Al has experienced three research waves since its
inception in 1956. Early Al relied on rule-based expert
systems, while the second wave relied mainly on machine
learning. However, due to the "data hunger" of machine-
based learning [8], it is difficult to meet the performance
requirements of various clinical fields. The third wave of
development benefits from the advancement of computer
technology and the advent of the big data era, with deep
learning becoming the mainstream of research.

Deep learning, a subset of machine learning, has
better performance and greater potential for improvement
compared to machine learning. Neural networks resemble
brain neurons, consisting of input layers, hidden layers,
and output layers. Deep neural networks have multiple
hidden layers, with deeper features in the network coming
from higher-level features of the previous layer and
building more such features. Therefore, deep learning
networks can self-train based on given data. Some
automated tools based on convolutional neural networks
and generative adversarial networks have been applied in
oncology research [9-11], such as pathological diagnosis
of tumors, elucidating molecular states from pathological
data, and standardizing the imaging quality of
pathological analysis [12]. Circulating neural networks
focusing on the cardiovascular and cerebrovascular fields
can achieve disease warning and prediction. Studies
based on radiomics and convolutional neural networks
have learned and analyzed images to complete basic tasks
such as image classification, image segmentation, and
object detection [13-16].

2.2 Development Research of Al in Breast Cancer
Ultrasound Screening

2.2.1 Deep Learning Models Based on Static Ultrasound
Images

The BI-RADS classification based on 2D features
has been widely used in clinical practice and plays an
important role in the standardized examination of breast
ultrasound. The Al-based BI-RADS assessment has
become an international standard for assessing malignant
tumors [17], and many scholars are committed to
developing Al models based on deep learning for the
classification of breast tumors to improve diagnostic
accuracy and consistency.

Hayashida et al. [18] established a deep learning-
based Al system, which is capable of distinguishing
ultrasound static images, classifying tumors as BI-RADS
3 or lower, BI-RADS 4a or higher, providing important

recommendations for the management and treatment of
breast patients. The system achieved a classification
accuracy with an area under the receiver operating
characteristic curve (AUC) of 0.95, which is significantly
higher than diagnosis accuracy of sonographers. Gu et al.
[19] collected 14,043 breast ultrasound images from 32
hospitals to develop a deep learning model. With the
model assistance, the accuracy and specificity of
sonographers were significantly improved, while
sensitivity remained unchanged. Shen et al. [20] reported
an Al system for breast cancer diagnosis, with higher
diagnostic value than the average of diagnoses from 10
breast sonographers (AUC=0.962). With assistance of Al,
the false positive rate of breast cancer diagnosis by
sonographers decreased by 37.3%, and the rate of
required biopsies reduced by 27.8%, while maintaining
the same sensitivity. Di et al. [21] constructed a
hierarchical dense feature aggregation network, a highly
accurate classification model for ultrasound breast lesion
classification. Results from validation on three datasets
indicated that its diagnostic performance exceeded
several state-of-the-art deep learning methods. Training
deep learning models in a fully supervised manner
requires annotation of regions of interest, which
consumes time and manpower and is susceptible to
human factors. Kim et al. [22] developed a weakly
supervised deep learning algorithm based on ultrasound
images that does not require image annotation. In both
internal and external validation sets, the weakly
supervised deep learning algorithm showed no
statistically ~significant difference in AUC values
compared to fully supervised deep learning algorithms,
indicating its good localization and differential diagnostic
capabilities for breast masses. Zhu et al. [23] developed a
deep convolutional neural network-based model for
classifying thyroid and breast lesions in ultrasound
images and proposed a generic deep convolutional
architecture with transfer learning and identical
architectural parameter settings. Results showed that both
TNet and BNet constructed on this architecture achieved
good classification results. When using TNet to classify
breast lesions, the model achieved a sensitivity of 86.6%
and specificity of 87.1%, demonstrating its ability to learn
features commonly shared by thyroid and breast lesions.
The AUC for breast cancer classification by the TNet
model was 0.875, higher than that of radiologists,
indicating that the model had higher accuracy in breast
cancer classification than radiologists.

2.2.2 Model Research Based on Dynamic Ultrasound
Videos

Static Al analysis mainly relies on sonographers
manually detecting lesions and selecting key frames,
which cannot truly capture and comprehensively analyze
images and overlooks the influence of key frame
selection. Therefore, it is necessary to develop an analysis
model based on real-time dynamic videos to address the
problem of single-angle plane wave ultrasound. Huang et
al. [24] proposed a framework based on deep learning
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that can automatically extract key frames from variable-
length breast ultrasound videos. It is equipped with a
nodules-based filtering module and feedback mechanism,
integrating the anatomical and diagnostic features of
lesions into key frame search. It also designed a simple
and effective loss function to alleviate the imbalance in
nodule classification. Experiments with these two
innovative designs showed that the framework could
generate representative key frame sequences under
various screening conditions, effectively addressing the
problem of Al key frame capture.

Contrast-enhanced  ultrasound  can  display
dynamically microcirculation of organ perfusion in real-
time. Its application in the breast has gradually matured,
and the detection of microvessels can improve the
diagnostic accuracy of breast diseases [25-26]. In 2021,
Chen et al. [27] proposed a novel diagnostic model based
on breast contrast-enhanced ultrasound videos. The
backbone of this model is a 3D convolutional neural
network. Sonographers usually focus on two specific
patterns when reviewing contrast-enhanced videos: the
time difference of contrast-agent-based perfusion and the
difference between contrast-enhanced ultrasound and
conventional ultrasound images. These two patterns were
integrated into an Al deep learning model, which included
a domain knowledge-guided temporal attention module
and a channel attention module. Validated on a dataset
consisting of 221 cases, the model achieved a sensitivity
of 97.2% and an accuracy of 86.3% for breast cancer
diagnosis. The establishment of this model further opened
up research into multimodal ultrasound-guided Al

2.2.3 3D Automated Breast Ultrasound Imaging

3D automated breast ultrasound does not rely
excessively on operators and has advantages such as
preserving standardized images and providing more
comprehensive scans for multiple nodules and non-mass
lesions. Comparing the diagnostic performance of
automated breast volume ultrasound systems and
handheld ultrasound in detecting and classifying dense
breast lesions, it was found that they exhibited good
consistency (kappa=0.66, P<0.01), indicating that 3D
automated breast volume ultrasound is a reliable method
for detecting malignant tumors in dense breasts. The
fusion of 3D ultrasound and AI has become an inevitable
trend. Hejduk et al. [28] developed a deep learning
network for automatic classification of automated breast
ultrasound (ABUS) volume images according to the BI-
RADS. In a comparative study with two radiologists, the
deep learning model exhibited similar sensitivity and
higher specificity, positive predictive value, and negative
predictive value, and achieved an AUC of 0.91,
comparable to the radiologists' AUCs of 0.82 and 0.91.
This indicates that the developed deep learning model can
detect and classify breast lesions in ABUS, achieving
classification accuracy similar to that of sonographers.
Scholars have found that computer-assisted automatic
breast volume imaging systems can help sonographers
shorten reading time, improve reading efficiency, and

achieve high detection sensitivity and low false positivity
[29-30]. The fully automatic breast ultrasound scanning
robot (artificial intelligence breast ultrasound diagnosis
system, AIBUS) is used for breast examination without
the need for sonographers. The robot automatically scans
based on breast morphology, with short scanning time.
The images obtained can be transmitted to the cloud in
real time and can achieve multi-terminal remote reading.
Yu et al. [31] compared AIBUS with handheld ultrasound
in terms of the detection rate, coincidence rate,
misdiagnosis rate, and examination time for breast cancer.
The results showed that AIBUS had a higher ultrasound
detection rate and shorter examination time, enabling
rapid completion of screening work. It can be used in
conjunction with handheld ultrasound to achieve
complementary advantages. AIBUS can be operated by
general technical personnel, which can alleviate the
shortage of physicians in breast cancer screening. AIBUS
can scan multiple planes, permanently save standard
images, and establish a database with good repeatability
and consistency, making it a good means of breast cancer
screening in the future.

2.24 Imaging Omics Prediction of Pathological
Classification Based on Ultrasound Deep Learning

With the further development of Al, scholars are no
longer satisfied with capturing lesions through Al and
diagnosing them based on BI-RADS classification. They
also hope to use Al to propose molecular subtyping or
histopathological subtyping of breast cancer. The
molecular subtypes of breast cancer are mainly
determined by immunohistochemistry and genetics, and
biopsy-based pathological detection has false negative
results. Ultrasonic radiomics is expected to become a new
guide for the histopathological subtyping of breast cancer
[32]. Zhou et al. [33] constructed a convolutional neural
network model for preoperatively predicting molecular
subtypes using multimodal ultrasound images, with
pathological results as the gold standard. The model
achieved satisfactory predictive performance in predicting
4-class and 5-class molecular subtypes and identifying
triple-negative ~ subtypes from  non-triple-negative
subtypes. A multicenter retrospective study showed that a
deep convolutional neural network based on preprocessed
ultrasound images had an accuracy of 97.02% in
predicting the four molecular subtypes of breast cancer,
and also had good diagnostic performance in
distinguishing intraductal from extralobular diseases [34].

3 AI Ultrasound Prediction of Neoadjuvant
Chemotherapy (NAC) Prognosis

NAC shows significant individual differences in the
treatment of breast cancer patients, so timely adjustment
of treatment plans is crucial. Liu ef al. [35] developed a
multitask Siamese network to predict the efficacy of
HER2-positive breast cancer patients in the early stage of
NAC. The results showed that the AUC value of the
network in the internal and external validation sets was
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significantly higher than that of the clinical model, which
helps clinical physicians adjust treatment plans in a
timely manner. Jiang et al. [36] developed radiotherapy
nomogram based on deep learning ultrasound, which can

provide valuable information for individualized treatment.

Gu et al. [37] developed two deep learning radiomic
models for predicting the response after the second and
fourth cycles of NAC, and combined these two models to
propose a deep learning radiomic pipeline (DLRP) for
gradually predicting responses at different times of NAC.
The results showed that the predictive accuracy of the two
models reached 0.81 and 0.94, respectively. The pipeline
model can predict early response to NAC to determine
further personalized treatment plans.

4 Al Ultrasound Prediction of Lymph Node
Metastasis in Breast Cancer

Axillary lymph nodes are a common site of
metastasis of breast cancer. The status of axillary lymph
nodes is a key indicator for evaluating the tumor staging
of breast cancer patients and determining treatment
strategies. In order to better understand their status and
reduce the incidence of postoperative complications, a
non-invasive and effective method is needed to assess the
status of axillary lymph nodes [38]. A multicenter study
showed that deep learning models can effectively predict
clinically negative axillary lymph node metastasis,
providing an early diagnostic strategy for lymph node
metastasis in breast cancer patients with lymph node-
negative [39]. Al can be used to predict whether there is
metastasis in axillary lymph nodes, with a sensitivity of
77.1%, a positive predictive value of 77.1%, and an AUC
value of 0.78, comparable to trained radiologists [40].
NAC can reduce the staging of tumor and axillary lymph
nodes in breast cancer patients. However, the response of
tumors and axillary lymph nodes to NAC is not parallel
and varies from patient to patient. Scholars have studied
the feasibility of independently predicting lymph node
metastasis using deep learning radiotherapy nomogram,
and the AUC values in the validation and test sets were
0.853 and 0.863, respectively, with specificities of 82.0%
and 81.8%, and negative predictive values of 81.3% and

87.2%, achieving satisfactory predictive performance [41].

5 Summary and Outlook

Most deep learning models based on neural
networks have demonstrate superior diagnostic
performance. The field of AI has evolved from the
analysis of static ultrasound images to capturing and
analyzing dynamic video key frames, as well as the
development of fully automatic AIBUS scanning and
analysis. Monomodal Al ultrasound has achieved
significant progress. In the future, there is potential to
integrate examination techniques such as elastography
and contrast-enhanced ultrasound into the research on
multimodal Al ultrasound, apart from increasing

international large-sample multicenter studies to optimize
Al models. In China, the coverage of early breast cancer
screening is very limited. Al ultrasound has the potential
to partially alleviate the shortage of sonographers, reduce
human biases, improve screening efficiency, and enhance
diagnostic efficacy. However, as Al has not yet achieved
algorithmic breakthroughs, it is primary used to assist
sonographers in refining diagnoses. Scholars need to
develop and explore further, aiming to enable the
widespread application of fully automated Al ultrasound
in breast disease screening. Additionally, Al ultrasound
based on radiomics, holds promise for predicting
pathological subtypes, forecasting outcomes of NAC, and
predicting lymph node metastasis in breast cancer, all of
which require further in-depth research.
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