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Abstract: In the tumor microenvironment, amino acids are important nutrients constituting immune cells and tumor cells.
Some proteins or key enzymes in the metabolism process are expected to become tumor diagnostic markers or therapeutic
targets. It was found that the contents of some amino acids were obviously different between normal people and gastric cancer
patients. Amino acid metabolism has also been confirmed to be involved in the activation of the PI3K/AKT/mTOR pathway,
which is one of the main pathways regulating the growth, proliferation, division and autophagy of tumor cells. Amino acid
metabolism can be used as a signal molecule to affect the occurrence, development and prognosis of gastric cancer by
activating related targets of this pathway. In addition, amino acid metabolism plays an important biological role in the
activation and differentiation of immune cells, which can affect the immune function of tumors by regulating immune cells and
immune factors.
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Gastric cancer (GC) is the fifth most common cancer
worldwide and the third most common cause of cancer
death. Helicobacter pylori (Hp) infection, age, high salt
intake, and low contents of fruits and vegetables in diet
are risk factors for GC [!l. Although the incidence and
mortality of GC have decreased with the improvement of
dietary structure and increased awareness of pathogenic
factors, the prognosis of GC patients is still poor.
Currently, common treatments include surgery and
chemotherapy [?1, and the 5-year survival rates of patients
can be significantly improved through surgical resection
for early GC. However, there is no specific clinical
indication for early GC, thus most patients are already in
the advanced stage at the time of diagnosis and have lost
the opportunity for surgery, resulting in a poor prognosis
. In recent years, the pathological features and the
tendency of GC have still been wunclear, and
metabolomics research found differences in amino acid
metabolism between normal people and GC patients.

1 Amino acid metabolism
progression

regulates GC

Amino acids are the essential components of
proteins and play an important role in the biosynthesis of
nucleotides, lipids, glutathione, glucosamine, and
polyamines [#. Diet-induced changes in the concentration
of amino acids are closely related to the activation of

signaling pathways P°l. At the same time, amino acids are
important nutrients that constitute immune cells and
tumor cells, and are involved in the composition of the
human immune system [©. Abnormal amino acid
metabolism is one of the characteristics of tumors, and
amino acid metabolism is involved in the progression of
tumors. It can damage the normal function of immune
cells in the tumor microenvironment (TME).

In the last century, the “Warburg effect” was
discovered by researchers, which indicates the
relationship  between  metabolomics and  tumor
progression U1, It reveals the reprogramming of glucose
metabolism within tumor cells. However, in addition to
abnormal glucose metabolism in tumor cells, abnormal
amino acid metabolism has also gradually attracted the
attention of researchers. During the occurrence and
progression of GC, reprogramming of amino acid
metabolism is one of the most significant features,
including the uptake rate of amino acids, metabolic
pathways of amino acids, metabolites, or abnormalities in
key enzymes in tumor cells ®l. Some proteins or key
enzymes in the metabolic process are expected to become
diagnostic markers of tumors or therapeutic targets. At
present, there is no evidence shows that the amino acid
metabolism has a direct influence on the occurrence and
progression of GC. However, through metabolomics
testing, the amino acid content in GC patients' blood,
urine, and tissues showed significant differences
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compared with those of normal people, and these
differences in amino acid metabolism may provide a
direction for how amino acid metabolism influences GC
[9]

In addition to the rapid proliferation, the progression
of GC is closely related to its surrounding environment.
Therefore, improving the TME of GC is also an essential
factor to be considered in treating GC. Alteration of TME
is a hallmark change in tumors. In the TME, tumor cells
activate immune cells under the condition of amino acid
withdrawal by regulating the balance of amino acid
metabolism. Thus, more amino acids will be used for
tumor cells' proliferation and invasion, and inhibition of
immune cells' normal function [®). In the TME, there are a
variety of immune cells, such as regulatory T cells (Treg),
tumor-associated macrophages (TAM), myeloid-derived
suppressor cells (MDSC), etc. 19 especially effector T
cells, whose infiltration capacity can be decreased under
multiple factors. They can also inhibit infiltrating effector
cells to affect antigen presentation and recognition, which
will lead to immune surveillance malfunction and tumor
immune escape, thus impairing the body's anti-tumor
immune response (11,

2 Different amino acids regulate occurrence and
progression of GC via PI3K/AKT/mTOR
signaling pathway

2.1 Several ways of PI3K/AKT/mTOR signaling
pathway regulating GC

PI3K-AKT is an agonist of cell survival and
metabolism, which is involved in apoptosis, autophagy,
and other functional states of GC cells. Its regulation of
GC progression generally includes several forms:
participating in the angiogenesis of GC tumor cells,
inducing apoptosis and autophagy in GC cells, promoting
cell invasion, metastasis, and other processes in GC ['2,

2.1.1 Involvement in angiogenesis of GC tumor cells
Angiogenesis is the foundation of the formation,
proliferation, and metastasis of GC cells 3], and it has
been found that vascular endothelial growth factor
(VEGF) plays a driving role in the occurrence and
progression of GC. The literature reveals that VEGF is
closely relevant to micro-vessel density, tumor
invasiveness, and tumor metastasis, verifying the
importance of angiogenesis in occurrence and progression
of GC. Therefore, VEGF has become a target in the
present anti-angiogenic treatment of GC U4, Chen et al.
[15] found that inhibition of the AKT signaling pathway
helps to induce the expression of CRMP4, which can
reduce cell proliferation and metastasis in GC cells in a
VEGF-mediated pathway.

2.1.2 Induction of apoptosis and autophagy in GC cells

Abnormal apoptosis is one of the crucial factors in
occurrence and progression of tumors. B-cell
lymphoma-2 (Bcl-2) and p53 are the primary factors

affecting apoptosis [l Wang et al. ['! found that
Hp-infected GC cells showed reduced manifestations of
increased cell proliferation and decreased apoptosis after
the PI3K/AKT signaling pathway was inhibited.

2.1.3 Promotion of invasion and metastasis in GC cells
Metastasis and invasion are essential processes in the
growth of most tumor cells, and the metastasis of GC is
promoted by activating the signaling targets in the
PI3K/AKT signaling pathway. Thy-1 antigen (CD90) is
located at chromosome 11g23.3, and CD90 plays a key
role in occurrence and progression of tumors of GC by
regulating cell proliferation, invasion, and metastasis.
Gao ¥l et al. found that CD90 up-regulated the levels of
PI3K, AKT, p-AKT-Ser473, and down-regulated the
expression of PTEN and p53, which indicated that CD90
may affect the invasion and metastasis of GC by
regulating the PI3K/AKT signaling pathway.

2.2 Glutamine

Glutamine is the most abundant amino acid in
human plasma and is involved in glutamate biosynthesis.
It is a product of the glutaminase (GLS) activity and a
source of amino acids for non-essential amino acids such
as alanine, aspartic acid, serine, and glycine. These
non-essential amino acids are important for
macromolecular synthesis [, Glutamate is hydrolyzed
by glutamate dehydrogenase and then converted to
a-ketoglutarate to formulate the tricarboxylic acid (TCA)
cycle. a-ketoglutarate is a substrate for the dioxygenases
that modify proteins and DNA. Glutaminolysis is the
conversion of glutamine to glutamate, which
produces energy via lactate 2%, This phenomenon is more
prominent in tumor cells, where glutamine synthesized by
the normal pathway is not sufficient for the rapid
proliferation and progression of the tumor cells
themselves. Accordingly, there is glutamine addiction in
tumor cells.

Glutamine metabolism regulates the proliferation,
growth, invasion, and metastasis of GC cells by activating
the PI3K/AKT/mTOR signaling pathway. Studies have
illustrated that genes related to the PI3K/AKT/mTOR
signaling pathway are commonly activated in GC patients,
and glutamine modulation of this pathway is beneficial to
inhibit GC P!, It has been reported that ASCT2, a
Na'-dependent neutral amino acid transporter, encoded by
the solute carrier family 1, member 5 (SLC1AS) gene, is
the primary transporter protein responsible for the uptake
of glutamine into cancer cells. Ye et al. 2! found that
glutamine could inhibit the growth of GC cells by
regulating the expression of ASCT2. Additionally, mTOR,
a key signaling node that regulates protein translation,
cell growth, and autophagy, plays the most important role
in the relevant targets activated by glutamine metabolism
(23], Among the complexes composed of mTOR, the
dysregulation of mTORCI is a key factor in occurrence
and progression of tumors, and glutamine participates in
the activation process of mTORCI. It has been reported
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that glutamine can be a signaling regulator of mTORCI1
to promote leucine uptake 4, promoting the composition
of mTORCI and localization of lysosome fusion.

2.3 Leucine

Leucine is a proteinogenic amino acid that typically
regulates growth by activating the mechanistic target of
rapamycin complex 1 (mTORC1) to control the synthesis
of protein and lipids and processes such as autophagy.
Studies have shown that amino acids are signaled to
mTORC1 through Rag guanosine triphosphatases
(GTPases) 1, and Rag proteins are a family of four
related small GTPases that interact with mTORC1 in an
amino-acid-sensitive manner [?°. Rags are obligate
hetero-dimers, with RagA or RagB pairing with RagC or
RagD 7. Leucine stimulates Rags to switch to their
active nucleotide-binding state, allowing them to bind to
Raptor and recruit mTORCI to the lysosomal surface.

Leucine and arginine in the cytoplasm signal to
mTORC1 via a unique pathway consisting of the
GATOR1 and GATOR?. It has been reported that SAR1B
is a leucine sensor that regulates mTORCI1 signaling
based on intracellular levels of leucine. Under
leucine-sufficient conditions, SARIB binds to leucine,
undergoes a conformational change, and dissociates from
the GATOR2 dissociation, thereby causing mTORCI
activation [23]. In addition, it has been shown that Sestrin 2,
a direct leucine sensor upstream of the mTORC1 pathway,
binds to GATOR2 and inhibits its function under leucine
starvation, and  that  leucine disrupts the
Sestrin2-GATOR2 interaction by binding to Sestrin 2.
The leucine-binding capacity of Sestrin2 is vital to
activate intracellular mTORC1 ™1 In addition, it has
been reported that transporter proteins containing two
subunits, SLC7AS5 (LAT1) and SLC3A2, mediate leucine
transport. The expression of these two subunits is
up-regulated when the T cell receptor (TCR) is involved
in T cell activation. That inhibition of SLC7AS5 causes a
closed state and suppresses the anti-tumor function of
human T cells ?°!. Sinclair et al. B% found that leucine is
involved in the activation of the mTORCI signaling
pathway in T cells through the L-type amino acid
transporter 1 (LAT1, also known as SLC7AS5). At the
same time, the protein expression of SLC7AS regulates
T-cell metabolism. This suggests that leucine can regulate
the immune function of tumors by activating the
mTORCI] signaling pathway in T cells via the SLC7AS,
thus affecting tumor progression.

2.4 Arginine

Arginine is a semi-essential amino acid with various
metabolic and regulatory roles. It serves as a
proteinogenic amino acid and a precursor of critical
molecules such as nitric oxide, creatine, and glutamate 31,
Arginine is one of only three amino acids that can directly
activate the mTOR pathway, and its main pathway is to
directly activate the mTOR signaling pathway through

cellular sensors 2. The specific ways are as follows:

1. Arginine activation of mTORCI requires
SLC38A9, a member of solute carrier family 38 (SLC38),
a lysosomal arginine transporter that regulates amino
acid-dependent mTORCI1 activity via the Rag-Ragulator
complex [33-36],

2. Arginine disrupts the interaction between
tuberous sclerosis complex (TSC) and mTORCI, thereby
activating the mTOR signaling pathway B3],

3.  Arginine disrupts the CASTOR-GATOR2
complex by binding to CASTORI1, which suggests that
arginine can activate the mTORC]1 pathway by binding to
CASTORI1 B¢ GATOR1, composed of DEPDCS5, Nprl2,
and Nprl3, inhibits mTORCI1 signaling by acting as a
GTPase-activating protein (GAP) for RagA/B, allowing
Rag A to bind the component of mMTORC1 complex, and
redistribute mTORC1 to the lysosome [71. In contrast,
GATOR?2 (composed of Mios, WDR24, WDRS59, SehlL,
and Secl3) is a positive regulator of mTORCI signaling
and interacts with GATORI on the lysosomal membrane
B3], This could explain why arginine is a potent activator
of mTOR, and arginine deprivation leads to immediate
inactivation of mTOR 7, The mTOR signaling pathway
plays an important role in occurrence and progression of
tumors of GC. Therefore, arginine can influence the
process of GC progression by participating in the
modulation of the mTOR signaling pathway, which is one
of the treatments of GC in clinical practice.

Arginine metabolism is mainly regulated by two
enzymes: arginase 1 (ARG1) and nitric oxide synthase
(NOS). Citrulline is catalyzed by argininosuccinate
synthetase 1 (ASS1) and argininosuccinate lyase (ASL) to
produce arginine, which is broken down into ornithine
and urea by ARGI. Ornithine generates citrulline via
ARG and ornithine carbamoyl transferase (OCT), thus
realizing the role of this metabolic cycle. NOS promotes
the oxidative hydrolysis of arginine to produce NO,
which is involved in the anti-inflammatory and immune
processes, and is essential in maintaining regular cellular
immune activity. It has been reported that NO inhibits
T-cell proliferation and promotes T-cell apoptosis, thereby
modulating  tumor immunity ¥, In  addition,
cysteoaspartase-8 (caspase 8) has long been known to
promote apoptosis and is part of the mechanism of
cytotoxic chemotherapy. Nanthakumaran et al. P found
that arginine activates cellular immunity via caspase 8
thereby inhibiting the proliferation of GC cells. Therefore,
arginine can also inhibit the progression of GC by
modulating the immune function of tumors.

2.5 Other amino acids

Aspartic acid is an o-amino acid, which belongs to
non-essential amino acids in the human body. In GC cells,
aspartic acid and asparagine can be involved in the
proliferation of GC cells and regulate intracellular
signaling. Studies have shown that extracellular
supplementation of asparagine can maintain protein
translation and promote tumor growth when glutamine is
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deficient in tumor cells (4%,

Tryptophan is an essential amino acid that
participates in a variety of human activities and maintains
regular cellular functions. It has an important role in
tumor metabolism. In addition to protein synthesis,
tryptophan regulates a series of processes in the TME and
tumor metabolism through the kynurenine pathway,
including inflammatory response, immune response, and
so on. According to the literature, kynurenine pathway
metabolites can rapidly activate the PI3K/AKT signaling
pathway, promote tumor cell proliferation, and inhibit
apoptosis 411,

Serine and glycine are important in the proliferation
of GC cells. Their related metabolic enzymes and
metabolites will regulate the growth of tumors. When the
intake of exogenous serine is insufficient, the tumor cells
can produce endogenous serine through the serine
synthesis pathway, and both endogenous and exogenous
serine contribute to the proliferation of tumor cells.
Glycine in tumor cells can be synthesized in various ways,
and many metabolic enzymes in its synthesis pathway
regulate tumor growth by interacting with transcription
factors [®l. Therefore, targeting serine and glycine may
provide a new idea for tumor therapy.

3 Outlook

Reprogramming of amino acid metabolism is one
of the crucial features of GC. The proliferation of GC
cells is rapid, and a series of metabolic disorders often
occur during this process, resulting in the formation of the
TME. The comparison of amino acid metabolism
between patients with GC and normal people can provide
a new treatment for GC. In tumor cells, on the one hand,
amino acids can change the TME and activate signaling
pathways through the regulation of metabolic pathways.
Amino acid metabolism has been proved to be involved
in the activation of the PI3K/AKT/mTOR signaling
pathway. However, the roles of some amino acids in the
PI3BK/AKT/mTOR signaling pathway still need to be
clarified. On the other hand, amino acid metabolism plays
an important biological role in the activation and
differentiation of immune cells, which can affect the
immune function of tumors through the regulation of
immune cells and immune factors. Therefore, if the
mechanism of interaction between amino acid
metabolism and immunity can be investigated, it will
provide a theoretical basis for researching relevant
antitumor drugs and other drugs in the future.
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