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According to the Global Cancer Statistics in 2020,
the incidence of gastric cancer ranks fifth, and the
mortality ranks fourth worldwide [1]. Gastric cancer is
characterized by extensive metastasis and high mortality.
Currently, chemotherapy is the primary treatment for
metastatic  gastric cancer, but the efficacy of
chemotherapy is common affected by drug resistance,
leading to treatment failure. The mechanism of
chemotherapy resistance in gastric cancer is complex and
influenced by multiple factors, among which metabolism
plays a pivotal role. Alterations in cell metabolism are
recognized as a hallmark of malignant tumors [2]. Gastric
cancer induces changes in metabolism, providing
therapeutic opportunities. Cancer cells exploit metabolic
processes for survival, growth, metastasis in a variety of
tissue microenvironments and acquire therapeutic
resistance. Metabolically targeted chemotherapy has
proven effective in cancer treatment, highlighting a
therapeutic window that targets malignant metabolism.
The study of metabolic changes will provide new
strategies for the treatment of gastric cancer, some of
which are being evaluated in preclinical models or
clinical trials. Relevant research progress is summarized
below.

1 Glycolysis and gastric cancer

Tumor cells consume large amounts of glucose for
glycolysis even in oxygen abundant environments [3].
Despite its low energy efficiency, glycolysis creates an
acidic microenvironment conducive to angiogenesis,
tumor progression, and immune evasion [4-5].

Hexokinase (HK), a key enzyme in glycolysis,
comprises four HK isotypes (HK1-4), with only HK2
isotype associated with Warburg effect. The expression of
HK2 in normal cells is very low or absent [6]. Liu et al.

[7] analyzed 2 532 cases of solid cancer (including 585
cases of gastric cancer) and showed that increased HK2
expression was associated with poor prognosis. Shao et al.
[8] reported that SALL4, a =zinc finger protein
transcription factor, promoted gastric cancer progression
through HK2-mediated glycolysis. Li et al. [9] observed
significant down-regulation of miR-181b in human
gastric cancer cells. By targeting its 3'-untranslated region,
miR-181b directly inhibited the expression of HK2, a key
enzyme in the first step of glycolysis, thereby negatively
regulating the glycolysis of gastric cancer cells.

Aldolase (ALDO) catalyzes the cleavage of Fructose
1,6-bisphosphatase ~ (FBP) into  dihydroxyacetone
phosphate (DHAP) and glyceraldehyde 3-phosphate [10].
Three aldolase isozymes, ALDOA, ALDOB, and ALDOC,
have been identified. ALDOA is the most prevalent
subtype reported in almost all kinds of malignant tumors
[11]. Jiang et al. [12] found high expression of ALDOA
in 70.6% of 252 gastric cancer patients, and its expression
was an independent prognostic factor for 5-year overall
survival (OS) and disease-free survival (DFS) of gastric
cancer patients. Silencing the expression of ALDOA by
shRNA transfection significantly reduced the growth,
proliferation and invasion ability of gastric cancer cell
lines.

Enolase catalyzes the conversion of
2-phosphoglycerate to phosphoenolpyruvate. Three types
of enolases have been described in mammals: a-enolase
(ENOL1), p-enolase, and y-enolase. Only ENOI1 is
overexpressed in more than 20 types of malignant tumors,
including gastric cancer [13]. Qiao et al [13] found
ENOI overexpression in 56% of 94 gastric cancer tissues
and 17% of 53 normal tissues, and the high expression of
ENO1 was associated with poor prognosis. In addition,
ENO1 was found to be overexpressed in gastric cancer
cell lines, and knockdown of ENOI1 could inhibit the
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proliferation and colony formation and promote apoptosis
of gastric cancer cells. Yang ef al. [14] confirmed the
association of high ENO1 expression with poor prognosis
in gastric cancer patients, suggesting that ENO1 was
involved in the regulation of stem cell-like properties of
gastric cancer cells. Qian ef al. [15] found the increased
expression of ENOI in cisplatin resistant cells of gastric
cancer, and knockout of ENO1 by siRNA transfection
significantly reduced glycolysis and reversed cisplatin
resistance.

Pyruvate kinase (PK) is a rate-limiting enzyme that
catalyzes the final steps of glycolysis. There are four PK
subtypes in mammals (L, R, M1, and M2), with PKM2
specifically prevalent in tumor cells [16]. Lim et al. [17]
found observed PKM2 expression in 144 (39.1%) out of
368 human gastric cancer tissues, noting a close
association between PKM2 expression and gastric cancer
differentiation. PKM2 positive cells accounted for 63.6%
in highly differentiated adenocarcinomas, but only 17.7%
in signet-ring cell carcinoma (SRCC). Moreover, PKM2
expression was correlated with shorter OS only in SRCC
(P < 0.05). Shiroki et al. [18] reported significantly
elevated PKM2 expression in cancer tissues compared to
non-cancerous tissues. Knockout of the PKM2 gene led
to notable reductions in proliferation, migration,
unanchored growth, and spheroidal formation of gastric
cancer cells in vitro, alongside diminished tumor growth
and liver metastasis in vivo.

Lactate dehydrogenase (LDH) plays a pivotal
regulatory role in glycolysis, comprising five active LDH
isoenzymes, mainly composed of A subunit and B subunit.
Elevated serum LDH levels are commonly observed in
malignant tumor patients and correlate with poor
prognosis and treatment resistance. The determination of
LDH has become an important auxiliary tool for cancer
diagnosis and treatment efficacy monitoring [19]. Sun et
al. [20] reported a high LDHA expression rate of 76% in
264 gastric cancer specimens, revealing a negative
correlation between LDHA expression and OS. The
expression of LDHA in gastric cancer was an independent
prognostic risk factor for OS. In addition, LDHA
knockout in gastric cancer cell lines inhibited in vitro and
in vivo cell growth, concurrently reducing lactic acid and
ATP production in gastric cancer cells.

2 Glutamine catabolism and gastric cancer

The transition of glutamine-derived nitrogen
metabolism from glutamine decomposition to de novo
nucleotide biosynthesis contributes to the malignant
evolution of cancer [21]. Through glutamine
decomposition, tumors metabolize large amounts of
glutamine into glutamate and ammonia. Glutamic acid is
converted to alpha-ketoglutaric acid (a-KG), a process
facilitated by oxidative phosphorylation (OXPHOS) and
fatty acid (FA) metabolism, providing energy for the
Krebs cycle. Simultaneously, glutamate serves as a
nitrogen donor for the synthesis of nucleic acids,
non-essential amino acids, and glutathione, which is

crucial for maintaining the REDOX state [22]. The
metabolism of glucose and glutamine coordinates the
production of energy and the synthesis of
macromolecules, especially the synthesis of FA and
reduction equivalents [23]. Glutamine is transported into
the cell through the plasma membrane by the transporters
SLC1A5, SLC38A1 and SLC38A2. Glutamine is
hydrolyzed by glutaminase (GLS) to produce glutamate
and ammonia. Wang et al. [24] observed elevated levels
of glutamate in gastric cancer patients, suggesting a
correlation between glutamate and tumor progression.
There are at least three subtypes of GLS: GLS1, GLS2,
and GAC, all of which are found in mitochondria [25].
GLS was expressed in various gastric cancer cell lines,
with increased expression observed under hypoxic
conditions. In vitro experiments, siRNA knockdown of
GLSI1 can lead to growth inhibition, while BPTES (GLS
inhibitors) have anti-tumor effects on GLSI1
overexpressed gastric cancer cell line
OCUM-2MD3/hypo cell transplanted tumor mice [26].
Quantitative proteomics studies based on isotope labeling
further provided evidence for GLS1 overexpression in
gastric cancer. These studies reported a 1.68-fold increase
in GLS1 expression, with 75.6% of gastric cancer tissues
showing GLS1 overexpression compared to 19.1% in
para-cancer tissues. This information collectively
supports the significance of glutamine metabolism,
specifically GLS1, in the context of gastric cancer
development and node metastasis [27]. Wu et al. [28]
found the glutamate dehydrogenase (GLUD) expression
in all 144 untreated gastric cancer patients, and the higher
the GLUD expression, the worse the prognosis. In
addition, GLUD silencing by shRNA in gastric cancer
cells has been confirmed to have antitumor effects in vitro
and in vivo experiments.

3 Lipid metabolism and gastric cancer

3.1 Fatty acid synthesis metabolism

In the lipid/lipid-soluble phenotype, malignant
tumor cells require a large amount of de novo synthesis of
fatty acids. Because fatty acids are components of cell
membranes and are the basis for the synthesis of lipid
derivatives for cell signal transduction, so tumors exhibit
overexpression of enzymes required for their synthesis
[29].

ATP-citrate lyase (ACLY) is a recognized important
enzyme for de novo synthesis of fatty acids. Acetyl-CoA,
an important component of endogenous fatty acid and
cholesterol biosynthesis, is produced by ACLY catalyzing
the conversion of citric acid to oxaloacetic acid in
cytoplasm, providing energy for tumor cell growth and
metabolism. Qian et al. [30] analyzed ACLY expression
of 83 gastric cancer patients, and found a higher ACLY
expression in 61% gastric cancer patients. Moreover,
patients with elevated ACLY expression levels
experienced significantly shorter survival times compared
to those with lower expression levels (23 months vs 78
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months, P=0.031). Cheng et al. [31] confirmed that
miR-133b targeted ACLY and inhibited the proliferation
of gastric cancer cells by regulating the expression of
peroxissome proliferator-activated receptor-y (PPARYy),
indicating miR-133b could potentially serve as a tumor
inhibition target in the treatment of gastric cancer.

Acetyl-CoA  carboxylase (ACO) converts
acetyl-CoA to malonyl-CoA, which provides the
two-carbon building blocks to produce more FA. In
mammals, ACC1 and ACC2 are two members of the
acetyl-CoA carboxylase family. ACCI1, located in the
cytoplasm, acts as the initial rate-limiting enzyme in the
de novo FA synthesis pathway, while ACC2, situated in
the outer mitochondrial —membrane, generates
malonyl-CoA and regulates the activity of carnitine
palmitoyltransferase 1 (CPT1) involved in FA B-oxidation
[32]. ACC is mainly regulated by AMP-activated protein
kinase (AMPK), which inactivates the enzyme through
phosphorylation, and protein phosphatase 2A (PP2A),
which dephosphorylates and activates the enzyme [33].
Fang et al. [34] revealed a significant association between
high expression of phosphorylation ACC (pACC) and
improved survival rates among gastric cancer patients
(P=0.006). Additionally, the expression of pACC
decreased with the progression of disease stage and
lymph node metastasis. Studies in vitro have confirmed
the overexpression of ACC in gastric cancer cell lines,
and the inactivation of ACC by metformin treatment led
to increased pACC levels, resulting in significant
inhibition of cell proliferation and growth. He et al. [35]
reported a significant negative correlation between ACC
expression and the infiltration level of CD8" T cells, as
well as the activity of immune cell lysis in gastric cancer,
suggesting that inhibiting ACC could potentially enhance
anti-tumor immunity in gastric cancer.

Fatty acid synthase (FASN) is a key enzyme
involved in converting dietary carbohydrates into fatty
acids. FASN is an oncogene in gastric cancer and can be
used as a potential biomarker. Previous studies have
showed an overexpressed FASN in gastric cancer tissues,
and its high expression was associated with poor survival
outcomes in patients. In addition, FASN expression
correlates with immune infiltration, playing an important
role in gastric cancer-related immunity [36]. Gastric
cancer cells have strong resistance to lost-cell apoptosis.
Lost-cell apoptosis resistance promotes the proliferation,
migration and invasion, and inhibits the apoptosis of
gastric cancer cells. Down-regulation of FASN can inhibit
the apoptosis resistance of gastric cancer cells, and is
related to the inhibition of p-ERK1/2/Bcl-xL signaling
pathway. The above findings suggest that FASN may be a
new target for anticancer therapy [37].

Stearoyl CoA desaturase 1 (SCD1) is a rate-limiting
enzyme in the endoplasmic reticulum, catalyzing the
conversion of saturated fatty acids (SFAs) to
monounsaturated fatty acids (MUFAs) [38]. Both SFAs
and MUFAs are important components of human cell
lipids, basic components of biofilms, and sources of
energy and signaling molecules such as cholesterol esters
[39]. Notably, the proliferation of tumor cells heavily

relies on MUFAs, and in the absence of exogenous
sources of MUFAs, their sustenance is entirely contingent
upon the activity of SCD1. Gao et al. [40] found that
SCDI1 could increase the number of gastric cancer stem
cells (GCSCs) by siRNA knockout and drug inhibition,
while inhibition of SCD1 inhibitors or siRNA could
weaken the stem-cell property of GCSCs. In addition,
inhibition of SCDI1 reversed epithelial to stromal cell
transformation and reduced metastasis of gastric cancer in
vitro and in vivo. Experimental evidence underscores the
role of SCD1 in promoting the growth and migration of
gastric cancer cells and conferring resistance against
apoptosis induced by iron overload, with heightened
SCD1 expression correlating with unfavorable prognoses
in gastric cancer patients [41]. In summary, the potential
utility of SCD1 as a biomarker and therapeutic target for
the early diagnosis of gastric cancer has been
demonstrated.

3.2 Cholesterol biosynthesis pathway

The cholesterol biosynthesis pathway is also known
as the mevalonate (MEVA) pathway. The rate-limiting
step of MEVA pathway is mediated by HMG-CoA
reductase (HMGCR), making it the most controlled part
of the pathway. Li et al. [42] confirmed that
overexpression of HMGCR could promote the growth
and migration of gastric cancer cells, while
downregulation of HMGCR expression could inhibit the
growth and migration of gastric cancer cells and the
occurrence of tumors, confirming HMGCR as a
promising therapeutic target. In recent years, MEVA
pathway has become an important regulatory factor and a
potential therapeutic target in tumor biology. This
pathway  controls  cholesterol  production  and
post-translational modification of the Rho-GTP enzyme
and is involved in several key steps of tumor progression
[43]. Studies have reported that simvastatin decreased the
growth, migration and invasion ability of gastric cancer
cells NCI-N87 and Hs746T. Interestingly, both isoprene
and cholesterol reversed these effects, suggesting that
inhibitors of the MEVA pathway merit further
investigation in the treatment of gastric cancer [44].

3.3 Fatty acid oxidation (FAQO)

Carnitine palmitoyl transferase (CPT), including
CPT1 and CPT2, plays a key role in FAO. CPT1, located
outside the mitochondrial membrane, is considered an
indispensable enzyme in the FAO process, which can
convert carnitine to fatty acylcarnitine [45]. CPTI1 is
composed of three isoenzymes, namely CPTla, CPT1b
and CPTlc. CPT2, located in the mitochondrial
membrane [46], converting acetyl-CoA into fatty
acyl-CoA and promoting FAO [47]. Wang et al. [48]
found that CPT1a protein expression was correlated with
the grade, pathological stage, lymph node metastasis and
poor prognosis of gastric cancer patients. Chen ef al. [49]
found that hypoxia-induced high expression of CPTlc
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was closely related to poor prognosis and could promote
the proliferation of gastric cancer cells.

4 Basis and future direction of blocking
metabolic pathways

The activity of these metabolic pathways such as
glycolysis, glutamine breakdown, fatty acid synthesis,
cholesterol synthesis, and FAO is not unique to malignant
cells. However, malignant tumors will utilize the
metabolic characteristics of these pathways to a greater
extent than normal cells, thus providing a level of
specificity for metabolic treatment of cancer. As shown in
Figure 1, these are the main metabolic pathways involved
in tumor growth and development. It can be seen from the
Figure 1 that that blocking key enzymes within these five
pathways can influence the corresponding metabolic
processes, presenting a potential avenue for effective
tumor treatment. If these major pathways are explicitly
obstructed, the energy requirements and biosynthesis of
macromolecules might not be fully compensated by
secondary metabolic pathways. Metabolic cancer
involves multiple metabolic pathways. If pathways can be
blocked as many as possible at the same time, metabolic
cancer treatment may be more effective. Chemical
inhibitors targeting metabolically key enzymes in gastric
cancer are currently in preclinical and clinical studies.
Although clinical drugs simultaneously inhibiting
multiple metabolic pathways have not been studied to
date, combinations of individual metabolic pathway
inhibitors have demonstrated superior antitumor effects
compared to single agents. For instance, the combined
use of the glycolysis inhibitor Lonidamine and the GLS
inhibitor compound 968 exhibited an increased antitumor
effect in lung cancer cells compared to their individual
application [50]. Similar results were observed in the
combination of Lonidamine and

6-diazo-5-oxo-L-norleucine (DON) in leukemia cells [51].

Wang et al. [52] found that inhibition of CPT-mediated
FA catabolism combined with conventional chemotherapy
is a promising treatment strategy for patients with
gastrointestinal cancer. FASN inhibitor--orlistat and FAO
inhibitor--etomoxir can synergically reduce the viability

of prostate cancer cell lines (VCaP, LNCaP) [53].

Interestingly, individualized treatment of these
metabolic drugs induces compensatory metabolic changes.
Inhibition of lipid oxidation with etomoxir can increase
glycolysis and enhance glucose uptake in xenograft
tumors of prostate cancer mice [54]. PKM2 depletion or
inhibition of glycolysis by 2-deoxyglucose (2-DG)
induces compensatory elevation of glutamine breakdown
in colon cancer cells [55]. When prostate cancer cells
were treated with glycolysis inhibitor, a compensatory
effect on glucose and lipid metabolism was observed [56].
When lung cancer cells are treated with FASN inhibitor,
compensatory  glutamine breakdown and ketone
metabolism are induced [57]. Based on the understanding
of tumor metabolic heterogeneity and reprogramming, on
the one hand, tumors may have single or multiple
concurrent super-activated cell subsets. On the other hand,
attacking multiple pathways simultaneously might
prevent the reprogramming or compensatory metabolic
changes caused by a single attack. Consequently,
simultaneous targeting of multiple pathways may lead to
more effective anti-tumor outcomes. At present, there is
no global health regulatory body has approved metabolic
inhibitors of any of these five metabolic pathways for the
clinical treatment of cancer. However, some glycolysis
inhibitor, glutamine breakdown inhibitor, FASN inhibitor,
MEVA inhibitor, and FAO inhibitor have been tested in
preclinical or clinical studies [58].

Table 1 shows the inhibitors of these metabolic
pathways, their targets and stages of development.
Current clinical studies have reported that these drugs
have certain anti-tumor efficacy and are well tolerated.
However, these drugs act only as a single agent.
Therefore, there is an urgent need to conduct preclinical
studies on large numbers of human cancer cells using any
of these five classes of inhibitors. Cervants-Madrid et al.
[59] found that the systematic combination of
clonitramine, DON and orlistat was well tolerated, and
these three drugs had anti-tumor effects when injected
into nude mice with colon cancer mouse transplanted
tumor models. Therefore, triple drug metabolism
blockade of malignant phenotype seems to be a feasible
and promising cancer treatment approach.
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Fig. 1 Major metabolic pathways that support tumour growth and progression

Tab.1 Inhibitor drugs of metabolic pathways in pre-clinical and clinical

Metabolic Pathway Inhibitor Drugs Targeting Phase
Glycolysis [ Lonidamine HK?2 Clinical application
2-DG HK2 Preclinical
Sodium oxalate LDHA Clinical application
Glutamine Decomposition (6 DON GLS1 Clinical application
BPTES GLS1 Preclinical
Fatty Acid Synthesis [62] Orlistat FASN Preclinical®
C75 FASN Preclinical
TVB-2640(Denifanstat) FASN Clinical application
TVB-3166 FASN Preclinical
TVB-3664 FASN Preclinical
FAO!S Etomoxir CPT1 Preclinical
Perhexiline CPT1, CPT2 Preclinical®
ST1326 (Teglicar) CPTla Preclinical
Cholesterol Synthesis [%4] Statin drugs (at least 7 types) HMGCR Preclinical and Clinical application®

Note: *, these drugs have been clinically used for indications other than cancer.
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5 Conclusion

Numerous preclinical studies have shown that
gastric cancer is characterized by high rates of glycolysis
and glutamine breakdown, increased rates of fatty acid
and cholesterol synthesis, and increased lipid turnover
through  fatty acid  beta-oxidation. = Moreover,
pharmacological blocking of these metabolic pathways
can have antitumor effects. At present, there are some
drugs that target various metabolic pathways in gastric
cancer. As mentioned earlier, the combination of two or
more inhibitors can enhance anti-tumor effects, a strategy
that may be more promising than using inhibitors alone.
In the study of cancer cell metabolism, the most
metabolic changes are glycolysis, glutamine breakdown,
and de novo synthesis of fatty acids. Therefore, these
pathways are natural targets for attacking malignant
metabolic phenotypes. The role of known inhibitors and
new selective inhibitors of these pathways in the
metabolic treatment of gastric cancer warrants further
investigation of their preclinical efficacy and feasibility.
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